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Introduction
Sound  forest  ecosystem  management  de-

pends on accurate, complete, and concise in-
formation  regarding  the  extent,  condition 
and productivity of the natural resources. Es-
timation of these attributes is commonly an 
agreed objective of forest monitoring and as-
sessment  programs  at  a  variety  of  spatial 
scales  (Kleinn  2002,  Corona  &  Marchetti 
2007). Each of such properties can also be 
investigated  with  regard to  its change  with 
time. Forest management information needs 
are focused and fostered by the global con-
text, in relationship to biodiversity, soil and 
water  conservation,  timber  provision,  non-
wood products, potential to sequester atmo-
spheric carbon, etc. Distinctively, monitoring 
and  assessment  programs  are  valuable  for 
providing broad overviews to help strategic 
and tactical planning development and allow 
to place forest  managers  into a perspective 
that  facilitates  the  prioritization  of  limited 
financial resources usually available. 

Technological  advancements  have  led  to 

sophisticated tools for the acquisition of cur-
rent,  meaningful,  and accurate  information, 
and methodological developments have con-
tributed  to  greater  efficiency  in  the  pro-
cessing and management of such information 
(Köhl et al. 2006). 

Forest inventory and forest mapping can be 
considered as monitoring and assessment ap-
plications that respond to different demands. 
For  forest  inventory,  the demand is for  in-
formation pertaining to the amount of forest 
resources and related attributes in a given re-
gion, and is satisfied by investigating a small 
part of the region in the form of a sample. 
For forest mapping, the demand is for a geo-
graphical depiction of the location of forest 
and  related  attributes  within  the  region. 
These  different  objectives  are  targeted  by 
different operational approaches which may 
vary considerably with  the size of  the sur-
veyed region. 

The integration of inventory and mapping 
data is emerging as a major issue for the de-
velopment of programs that monitor and as-
sess land and multiple environmental  func-
tions. Stehman (2009) highlights this issue in 
the  context  of  estimating  the  area  of  land 
cover and land cover change. From this per-
spective,  the present paper aims to provide 
general considerations on the integration of 
forest inventory and mapping in the form of 
commentary  discussion  for  the  community 
of foresters with basic knowledge of geoma-
tics and inventory. 

Forest mapping
For  purposes  of  supporting  operational 

forest  management,  the  cartographic  repre-
sentation of forest  cover is generally based 

on a minimum mapping unit  defined to be 
0.5  ha  (Vidal  et  al.  2008).  Thus,  remotely 
sensed imagery with high and very high geo-
metric resolution is required. 

Remote sensing is defined as the acquisi-
tion of data from sensors on board aircraft or 
space-based  platforms.  There  are  two  ca-
tegories  of  sensors,  passive  and active:  the 
first measures the reflectance of naturally oc-
curring  solar  radiation  (e.g.,  photography), 
and  the  second  measures  radiation  that  is 
transmitted  from  the  sensor  and  reflected 
from the earth’s surface back to the sensor 
(e.g., radar). Aircraft sensors principally in-
volve aerial photos linked to a geographical 
reference system or light detection and ran-
ging (LiDAR) imagery,  with  image resolu-
tions of 1 m or less. Satellite-based sensors 
acquire images covering large geographical 
areas and have variable geometric resolution, 
ranging  from  submetric  to  kilometers  (for 
further  background  on  remote  sensing,  see 
Campbell 2007; for forestry application, see 
Wulder & Franklin 2003). 

Until recently, aerial imagery has been the 
main  source  of  remotely  sensed  data  for 
operational  purposes.  However,  in  the  last 
two decades new technologies have enabled 
a  transition from data  such as  a mosaic  of 
photos to digital imagery in form of a matrix 
of pixels and has produced many advantages 
for  data  acquisition,  management  and  ana-
lysis. Meaningful examples of airborne digi-
tal  imagery  include  the  ADS40  (Reulke 
2001)  and  the  ASPIS  (Papale  et  al.  2008) 
systems.  An example  of  a  typical  airborne 
application is the assessment of forest burnt 
areas (Corona et  al.  2008) in environments 
where most fires are small (e.g., less than 10-
ha  wide)  as  in  Europe  (http://effis.jr-
c.ec.europa.eu/about/technical-background/). 

Airborne imagery is  usually  less  efficient 
in terms of the ratio of quality to cost than 
satellite images for the multitemporal moni-
toring and assessment of forest resources for 
large areas. Satellite imagery with metric or 
submetric  resolution  in  the  panchromatic 
channel  (e.g., Formosat,  IKONOS,  Quick-
Bird, OrbView-3, WorldView-2, Pleiades) is 
suitable  for  mapping  at  scales  of  1:5000-
1:10000,  while  Landsat  TM,  Spot  HRV, 
Spot5 and Aster data probably represent the 
current best trade-off in terms of the quality-
cost ratio for mapping at scales of 1:25000-
1:50000. 

On-screen  image  interpretation  is  com-
monly adopted for forest mapping at a pro-
fessional level: panchromatic and/or natural 
colors  and/or  false  color  (eventually  fused 
with  the panchromatic  channel)  images  are 
the  base  for  the  manual  delineation  and 
thematic classification of the delineated vec-
torial objects (polygons). However, the qua-
lity of products obtained with this procedure 
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is  dependent to  some degree on interpreter 
subjectivity. 

Automatic  (unsupervised)  and  semiauto-
matic (supervised) methods of multispectral 
image classification have been developed to 
produce  cheaper  and  more  objective  pro-
ducts.  Supervised  methods  are  based  on 
ground-truthing,  a term used extensively to 
describe the best available determination of 
the true thematic  class  at  a  specified  loca-
tion. With supervised classification, ground-
truth data is acquired for a specified number 
of training pixels for each thematic class as a 
means of determining the spectral signature 
(distribution  of  the  digital  numbers,  DN, 
across  the spectral  channels)  typical  of  the 
class.  The  multispectral  reflectance  of  the 
target pixels (i.e., the pixels to be classified) 
is compared with the spectral signatures of 
the classes so that each target pixel can be 
assigned  (e.g., by discriminant  analysis)  to 
the thematic  class  whose  signature  is  most 
similar  to  the  pixel’s  multispectral  reflec-
tance. Unsupervised methods do not require 
the acquisition of training pixels. Instead, the 
classification  is  carried  out  by  grouping 
(cluster analysis)  the pixels  on the basis of 
their similarity in terms of multispectral re-
flectance. The resulting groups are viewed as 
thematic classes and labelled a posteriori by 
the interpreter. If ground data have been ac-
quired, labels could be assigned to groups on 
the basis of the most common class (or some 
other measure) of the ground data points in-
cluded in the group (for further details, see 
e.g., Campbell 2007). 

The  previously  described  approaches  are 
characterized  as  pixel-oriented  because  the 
classification  is  carried  out  on  a  per-pixel 
basis.  In  the  last  decade  alternative  tech-
niques have been developed based on object-
oriented classification (Benz et al. 2004) of 
polygons produced by image segmentation. 
Image segmentation refers to partitioning an 
image  into  meaningful  regions  based  on 
either homogeneity or heterogeneity criteria 
(see  Haralick  &  Shapiro  1992)  and  repre-
sents  the  interface  between  image  pre-pro-
cessing and image interpretation (object re-
cognition). The advantage of this approach is 
that greater information content can be asso-
ciated  with  the  polygons  than  with  single 
pixels;  such  content  includes  the  geometry 
and hierarchy of the polygons and the spec-
tral heterogeneity of the pixels in each poly-
gon.  The  segmentation  of  digital  imagery 
can be carried out (semi)automatically faster 
and more objectively (Baatz & Schäpe 2000) 
than  manual  polygon  delineation.  Map 
products obtained using digital segmentation 
and  object-oriented  classification  are  more 
suitable to customer expectations and more 
similar to the conventional maps obtained by 
manual interpretation than those produced by 
the pixel-oriented approach. 

LiDAR techniques, particularly aerial laser 

scanning, have tremendous potential for sup-
porting  operational  forest  management  and 
represent the frontier of current research in 
this area. By measuring forest canopy height 
and eventually the width and depth of indi-
vidual tree crowns, LiDAR data can be used 
effectively to represent the structure of forest 
stands  and  to  estimate  standing  wood 
volume, biomass, etc. Considerable research 
is ongoing to establish reliable and feasible 
survey protocols for integrating LiDAR and 
forest  inventory  data  (e.g.,  Peterson  et  al. 
2007,  McRoberts & Tomppo 2007,  Næsset 
&  Gobakken  2008,  Corona  &  Fattorini 
2008).  This  issue  will  not  be  directly  ad-
dressed in this paper. 

Forest inventory
A forest inventory is the statistical descrip-

tion of the quantitative and qualitative attri-
butes of the forest  resources in a given re-
gion.  Forest  inventory information  is gene-
rally reported for management and/or admi-
nistrative units (e.g., district, province, coun-
try)  and/or for  thematic or resource classes 
(e.g., forest type, age). Forest inventories are 
currently evolving towards multipurpose re-
sources surveys (Lund 1998, Corona & Mar-
chetti 2007) and are broadening their scope 
in two major directions (Kleinn 2002): (i) in-
clusion  of  additional  variables  that  are  not 
directly  related  to  timber  assessment  and 
wood harvesting,  such as biodiversity attri-
butes; (ii) expansion of the target population 
to  include  non-traditional  objects  such  as 
trees outside forests and urban forests. 

Forest  inventory  could,  in  principle,  be 
based on a complete census for which every 
tree in a given region is measured. However, 
this is usually impossible because of the time 
and/or costs associated with the large areas 
involved. Therefore, information is typically 
acquired using sampling methods for which 
only  a  proportion  of  the  population  (the 
sample)  is  inspected,  and  inferences  regar-
ding the whole population are based on this 
sample (Kangas & Maltamo 2007). Multiple 
sampling strategies (e.g., Gregoire & Valen-
tine  2008,  Mandallaz  2008)  are  associated 
with the wide variety of types of forest  in-
ventories (for a typology of forest inventor-
ies,  see  Köhl  et  al.  2006).  However,  all 
sample-based  inventories  over  large  areas 
share  a  common  methodological  feature: 
sample  units  are  objectively  selected  by 
rigorous  probabilistic  rules  as  a  means  of 
guaranteeing  the  credibility  of  estimates 
(Olsen & Schreuder 1997). 

Traditionally, forest inventory data are ana-
lysed in the framework of design-based in-
ference for which population values are re-
garded as fixed constants and the randomiza-
tion distribution resulting from the sampling 
design  is  the  basis  of  inference.  In  this 
framework,  the bias and variance of an es-
timator  of  a  population  parameter  are  de-

termined from the set of all possible samples 
(the sample space) and from the probability 
associated with  each sample.  Särndal et  al. 
(1992), Gregoire (1998) and Fattorini (2001) 
provide extensive discussion of design-based 
inference  and  contrast  it  with  model-based 
inference.  Usually,  forest  inventories  adopt 
sampling schemes in which a set of points is 
randomly selected from the study region in 
accordance with  a  spatial  sampling design. 
Subsequently,  plots  of  adequate  radius  are 
then established with centres at the selected 
points, and forest attributes are recorded for 
the plots (e.g., De Vries 1986,  Schreuder et 
al. 1993,  Fattorini et al. 2006). Ground data 
obtained  from  these  plots  are  the  type  to 
which this paper refers. 

Relationships between forest 
inventory and mapping

The potential  to  integrate  multisource  in-
formation is a key element of forest monito-
ring and assessment  programs (Lund 1998, 
Köhl  et  al.  2006,  McRoberts  &  Tomppo 
2007).  Inter alia,  the relationships between 
forest inventory and mapping can be framed 
in the perspective of: 
• exploiting thematic maps for stratifying the 

inventory  sample  for  purposes  of  impro-
ving the precision of inventory estimates;

• coupling the remotely sensed data  for  an 
entire region with sample inventory data to 
produce maps of the inventoried forest at-
tributes;

• coupling the remotely sensed data with the 
sample inventory data to improve the pre-
cision of the inventory estimates;

• exploiting  the inventory data  as  prior  in-
formation to support thematic mapping;

• exploiting the inventory data for  the cor-
rection of map areal estimates.

Exploiting thematic maps for stratifying  
the inventory sample 

Stratified sampling consists of dividing the 
population into subpopulations, called strata, 
that  are  relatively  homogeneous,  and  then 
sampling  each  stratum separately.  In  most 
situations,  stratified probability sampling is 
likely  to  yield  more  precise  population  es-
timates (i.e., estimates with smaller standard 
errors)  than  non-stratified  probability 
sampling with the same sample size. 

The strata can be obtained directly as the-
matic  classes  or  groups  of  classes  from  a 
thematic  map;  in this case,  the map impli-
citly  provides  the  complete  coverage  of 
auxiliary information  to  improve  the preci-
sion of the inventory estimates.  The opera-
tional procedure (map polygon stratification) 
includes five steps: (1) the proportion of the 
area of each stratum with respect to the area 
of the mapped region is calculated; (2) a spe-
cified number of sample units is allocated to 
each  stratum,  usually  in  proportion  to  the 
area of the stratum as determined from the 
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map or  possibly in  proportional  to  stratum 
variances;  (3)  sample  units  are  geolocated 
independently within each stratum according 
to a given probability sampling scheme; (4) 
statistical  parameters  (e.g.,  mean,  total  and 
their variances) are estimated for each stra-
tum; and (5) stratum estimates are combined 
to obtain the overall estimates for the popu-
lation.  Practical  examples  can  be  found  in 
Lund  & Thomas  (1989) and  Suárez  et  al. 
(2004). 

Post-stratification is often applied too: it is 
not used to select the sample, but is instead 
used to assign plots to strata after the sample 
has been selected. However, the same strati-
fied  estimators  are  used  for  the  analysis. 
When  an  inventory  uses  permanent  plots, 
there  is  no  opportunity  for  stratified 
sampling;  nevertheless,  stratified estimation 
may still substantially improve the precision 
of estimates. The auxiliary information is the 
proportion of area in each of the post-strata 
constructed  from  the  mapped  classes. 
Examples of post-stratification can be found 
in McRoberts et al. (2002, 2005) and Nilsson 
et al. (2005). 

Note that application of both the above ap-
proaches  usually  ignores  complications 
arising from map errors and spatial misregis-
tration  of  inventory  data  locations  to  the 
map:  of  course,  the  amount  by  which  the 
stratification  improves  precision diminishes 
to  the  degree  that  such  shortcomings  are 
present.  The  issue  of  the  above  complica-
tions affects almost all the applications dis-
cussed in this paper but it will not be further 
addressed. 

Coupling remotely sensed data and in-
ventory data to map forest attributes 

Estimation of the relationship between re-
motely sensed data  and the biophysical  at-
tributes of forest vegetation (standing wood 
volume,  biomass  increment,  etc.)  permits 
maps of the attributes observed at the sample 
inventory units to be constructed for the en-
tire region of interest,  i.e., the attributes can 
be predicted for all the pixels in the region 
thus producing maps.  The exploited auxili-
ary  variables  are  usually  the  DNs  of  the 
spectral  channels  (and/or  their  combination 
to  produce vegetation indices,  e.g., Maselli 
et al. 2005) which are available for all the N 
pixels in the region, while the values of the 
Y-variable of interest (the forest attribute) are 
known only for the sample of  n pixels cor-
responding  to  the  inventory  sample  units, 
characterized as the reference set. 

The mapping procedures can be based on 
either  parametric  or  non-parametric  ap-
proaches  to  predicting  the  values  of  Y for 
pixels that do not correspond to the invent-
ory sample units, characterized as the target 
set. Non-parametric approaches are distribu-
tion-free in that they do not rely on any un-
derlying probability distribution for  estima-

tion. 
Nearest  Neighbors  (NN)  techniques  are 

well  known  non-parametric  approaches 
whose operational application is increasing, 
even  at  the forest  professional  level.  Other 
non-parametric approaches such as decision 
trees (classification and regression tree, Ran-
dom Forest) and neural networks (multilayer 
perceptrons,  self-organising  maps,  radial 
basis function networks, adaptive resonance 
theory networks,  etc.)  are promising,  albeit 
usually less effective than NN techniques for 
mapping forest attributes (e.g., McInerney & 
Nieuwenhuis 2009, Stümer et al. 2010). NN 
techniques  predict  the  unknown  value  of 
Y for the j-th target pixel as a weighted mean 
of  the  Y values  for  the  k reference  pixels 
nearest to the j-th target pixel in the multidi-
mensional  space  defined  by  the  auxiliary 
variables (eqn. 1): 

where  k (<n) denotes the number of neigh-
bours adopted for the prediction and the wis 
are  weights  such  that  w1+…+wi=1.  A 
straightforward  and  suitable  choice  for  the 
weights  is  wi=1/k for  any  i=1,…,k (McRo-
berts et  al.  2007,  Baffetta  et  al.  2009),  but 
they are often selected to be inversely pro-
portional  to  the  multidimensional  distance 
between the j-th target pixel and each of the 
k nearest  neighbor  reference  pixels. 
Examples  of  NN applications  are  provided 
by Franco-Lopez et al. (2001), Tomppo et al. 
(2002a,  2009),  Chirici  et  al.  (2008), 
McRoberts (2009a). 

Among  parametric  approaches,  the  most 
commonly  used  is  generalized  regression 
(GREG) for  which  the  prediction  of  Y for 
each target pixel is based on a regression (or 
ratio)  established  between  Y and  the  auxi-
liary variables using data from the reference 
set. The adopted model is often linear, such 
as (eqn. 2): 

where  X1, …,  Xq are the auxiliary variables. 
However, the GREG estimator may encom-
pass  a  wide  range  of  additional  models. 
Examples  of  application  of  the  GREG ap-
proach are provided by  Moisen & Edwards 
(1999), Puhr & Donoghue (2000) and Opso-
mer et al. (2007). 

All other factors being equal, some Monte 
Carlo investigations empirically demonstrate 
that  GREG  is  usually  more  effective  than 
NN (Baffetta  et  al.  2009),  but  in  some si-
tuations it may give rise to unlikely results 
(e.g., negative predictions). A major advan-
tage  of  the NN approach is that it  is  mul-
tivariate in the sense that it can estimate mul-
tiple  Y-variables simultaneously and still re-
tain their complex variance-covariance struc-
ture and natural variation within the bounds 
of biological reality, at least as long as  k=1 

(see  McRoberts  2009b).  On  the  contrary, 
with  regression  approaches  Y-variables  are 
often estimated separately which may lead to 
estimates  with  unreasonable  relationships 
and variance-covariance structures that differ 
greatly from the original field data (Eskelson 
et  al.  2009).  However,  with  respect  to  the 
above issues, NN tends to behave more like 
regression approaches as k increases. 

Coupling remotely sensed data with the  
sample  inventory  data  to  improve  the  
precision of the inventory estimates

This section is complementary to the pre-
ceding  one  in  that  the  maps  constructed 
using auxiliary remotely sensed information 
that is correlated with the  Y-variables of in-
terest  may also be used to more efficiently 
estimate statistical parameters (e.g.,  Nilsson 
et al. 2003). 

In the case of model-assisted estimation, if 
the locations of the reference set  S (the in-
ventory  sample)  are  obtained  using  simple 
random or systematic  sampling without  re-
placement,  then prediction approaches such 
as kNN and GREG can be used with the ap-
proximately unbiased estimator of the popu-
lation  total  Y over  the  entire  study  region 
given by (eqn. 3): 

where ỹj denotes the predicted value of Y for 
the j-th pixel and ej = yj  - ỹj denotes the pre-
diction  error.  Moreover,  an  approximately 
conservative  estimator  of  the  sampling  va-
riance is given by (eqn. 4): 

where (eqn. 5): 

If only the sample inventory data from the 
reference set are used for estimation (i.e., the 
auxiliary information from remote sensing is 
not used), then the unbiased estimator of the 
total  Y under simple random sampling with-
out replacement is (eqn. 6): 

while the unbiased estimator of the sampling 
variance is (eqn. 7): 

where ӯ = T / N. 
If the relationship between Y and the auxi-

liary  variables  is  sufficiently  strong,  the 
model-assisted  estimator  T asst  tends  to  be 
more precise than T . In  relative terms,  the 
relative  advantage  of T asst  over T with  re-
spect to precision increases as the size of the 
reference set decreases. Note, however, that 
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even  the  estimation  error  of  T asst may be 
large  for  small  areas  with  few  sampled 
pixels.  This  problem is  well-recognized  in 
the statistical literature as small area estima-
tion and can be handled only by using mod-
el-based approaches (e.g., Rao 2003). 

Model-assisted estimators can be used with 
any probability sampling design (for general 
formulation of the estimators - see  Baffetta 
et al.  2009, chapt. 3.2) and allow great fle-
xibility  in  modelling  the  relationship 
between  the  Y and  the  auxiliary  variables. 
While the improvement in the precision of a 
model-assisted  estimator  is  dependent  on 
how well the specified model corresponds to 
the actual relationship between the Y and the 
auxiliary variables, the validity of the infe-
rence is not dependent on correct model spe-
cification but instead remains based on the 
randomization  distribution  associated  with 
the  sampling  design.  In  particular,  mod-
el-assisted  estimators  are  approximately 
(asymptotically)  design  unbiased regardless 
of whether the working model is correct or 
not, and are particularly efficient if the work-
ing model is correct. 

Inventory  data as prior information to  
support thematic mapping 

The information from forest inventory data 
about  the  distribution  of  given  thematic 
classes in relation to environmental  charac-
teristics can be exploited as a priori know-
ledge  for  the  thematic  classification  of  re-
motely sensed imagery. 

Prior  probability  can  be  incorporated  in 
classical  discriminant  analysis  (Tomppo  et 
al.  2002b) and, more generally,  with Baye-
sian classifiers. The radiometric information 
in  the remote  sensing  data  (i.e.,  the  multi-
spectral reflectance of each pixel/polygon) is 
combined with the additional, independently 
available forest inventory data (the prior in-
formation) to produce a full probability dis-
tribution (posterior distribution), so that the 
class  with  the  highest  posterior  probability 
can  be  assigned  to  each  pixel  or  polygon. 
This approach exploits the potential of forest 
inventory  data  for  establishing  quantitative 
relationships between the spatial distribution 
of the thematic classes (e.g., forest types) to 
be mapped and environmental  factors  such 
as  altitude,  exposure,  soil  type,  etc. 
Examples of forest mapping applications are 
provided  by  Shataee  &  Darvishsefat  2004 
and Finley et al. (2008). 

Exploiting inventory data for the  
correction of map areal estimates 

There are important risks in using thematic 
maps produced by interpretation of remotely 
sensed imagery as a direct tool to estimate 
spatial  variables.  When mapping,  the inter-
pretation  errors  tend  to  be  systematic,  and 
there is no compensation between commis-
sion  and  omission  errors,  i.e.,  areas  of  a 

land-use type A incorrectly mapped as land-
use type B are not offset by areas of land-use 
type incorrectly mapped as A (Carfagna  & 
Gallego 1999, Corona 1999). 

Area estimation can be viewed as a value-
added analysis  appended to a forest  inven-
tory when the sample obtained from the in-
ventory is used to estimate the area of each 
class from a given map,  i.e.,  the confusion 
matrix obtained from the inventory sample is 
used to adjust the area of each thematic class 
(e.g., Stehman 2009, McRoberts 2009c). Ob-
viously this is feasible only when the inven-
tory nomenclature is analogous to that of the 
map. 

If points are selected completely at random 
over  the  study  area  (simple  random 
sampling) or randomly within the polygons 
partitioning the study area (tessellation strati-
fied sampling) the classical estimator for the 
size of the area of type m is (eqn. 8): 

where  p7 m is  the  proportion  of  inventory 
points classified as type m with respect to the 
total number of inventory points, say n, and 
A is the size of the study region. In this case 
the variance estimator (eqn. 9): 

is  unbiased under  simple random sampling 
and conservative under tesselation stratified 
sampling (Fattorini et al. 2004). However, if 
a  thematic  map  of  the  study  area  is  pre-
viously  available,  and  if  A1,  …,  Ac are  the 
areas of the  C thematic classes partitioning 
the map, an alternative estimator for the area 
of type m is given by (eqn. 10): 

where p7 hm represents the proportion of the in-
ventory points mapped as forest  type  h but 
actually belonging to forest  type  m.  In  this 
case the variance estimator (eqn. 11): 

is once again unbiased under simple random 
sampling and conservative under tesselation 
stratified sampling. 

Gallego (2004) provides a comprehensive 
review of area estimation methods, Stehman 
& Foody (2009) review basic methods of ac-
curacy assessment, and Stehman (2009) uses 
model-assisted  estimation  as  a  unifying 
framework  for  estimating  the  area  of  land 
cover  and  land-cover  change  from  remote 
sensing. 

For  the sake  of  completeness,  it  must  be 
acknowledged  that  even  model-based  ap-
proaches  are  gaining  importance  for  this 
topic  area.  The  criteria  underlying  model-
based  inference  differ  considerably  from 
those underlying the design-based inference 

for  the  above  mentioned  model-assisted 
estimation framework. The statistical proper-
ties  of  design-based  estimators  are  derived 
with  respect  to  all  the  possible  samples 
arising from the adopted sampling scheme, 
considering the population values as a set of 
fixed constants. On the other hand, the pro-
perties  of  model-based  estimators  are  ob-
tained  with  respect  to  all  the  populations 
which may be generated from the assumed 
superpopulation  model,  considering  the 
sample as fixed (i.e.,  purposively selected). 
The  validity  of  a  model-based inference  is 
based on the validity of the model, not the 
probabilistic nature of the sample as is the 
case for design-based inference. In fact, pur-
posive,  non-probability  samples  may  pro-
duce entirely valid  model-based inferences. 
Model-based  approaches  are  distinctively 
(but  not  only)  suitable  for  small  areas,  as 
already stressed (see § 4.3). A model-based 
approach to estimating forest area is reported 
by McRoberts (2006). 

Final remark
The improvement of forest surveys through 

multi-purpose and multi-source networks is a 
topic of increasing interest and is usually re-
garded more positively by the stakeholders, 
governmental  or  not,  than establishment  of 
new  monitoring  and  assessment  programs. 
Support for forest management should there-
fore be framed according to a multi-faceted 
approach that integrates mapping and inven-
tory as a means of providing comprehensive 
knowledge on the state and trends of forest 
resources as well as on the interactions and 
interdependencies with other land uses. 

As  remote  sensing  technology  and  asso-
ciated  analytical  methods  continue  to  im-
prove rapidly with reasonable costs, they are 
likely to play an even more substantial role 
for forest monitoring and assessment in the 
future. In this light, it must be stressed that 
the  conceptual  and  methodological  diffe-
rences between forest mapping and forest in-
ventory  are  often  unduly  amplified  by  the 
lack  of  standardization  /  harmonization 
between  their  nomenclature  systems.  In-
stead, nomenclature systems may constitute 
fundamental bridges, and the value of shared 
and integrated typological frameworks, from 
continental (e.g., Barbati et al. 2007) to local 
(e.g.,  Corona et al.  2004) scales, should be 
more readily acknowledged. 
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