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Introduction
Fires can cause permanent changes in the 

composition  of  vegetation  community,  de­
crease in  vegetational  covers,  loss of  biod­
iversity, soil degradation, alteration of land­
scape  patterns  and  ecosystem  functioning 
thus  speeding  desertification  processes  up. 
Furthermore,  fires  can  contribute  to  alien 
plant  invasion,  patch  homogenization,  and 
create positive feedbacks in future fire sus­
ceptibility,  fuel  loading,  fire  spreading and 
intensity. Wildland fires are considered one 
of the most important disturbance factors in 
the natural ecosystems of the Mediterranean 
regions,  where  every  year,  around  45000 
forest fires break out causing the destruction 
of  about  2.6  million  hectares  (FAO 2001). 
Several  studies  (Vila  et  al.  2001)  dealing 
with  the  effects  of  fires  on  the  vegetation 
within  the  Mediterranean  basin  found  that 

fires induce significant alterations in short as 
well as long-term vegetation dynamics.

Prevention  measures,  together  with  early 
warning  and  fast  extinction,  are  the  only 
methods available that can support fire fight­
ing and limit damages caused by fires espe­
cially in regions with high ecological value, 
dense populations, etc. In order to limit fire 
damage, fire agencies need to have effective 

decision  support  tools  that  are  able  to 
provide  timely  information  for  quantifying 
fire risk. In particular, fire managers need in­
formation  concerning  the  distribution, 
amount and condition of fuels in order to im­
prove  fire  prevention  and  modelling  fire 
spreading and intensity. Geographic Inform­
ation  Systems  (GIS)  and  Remote  Sensing 
(RS) are considered useful tools for support­
ing  prevention  activities  (Chuvieco  et  al. 
2004). Remote sensing can provide valuable 
data  on  type  (namely  distribution  and 
amount of fuels) and status of vegetation in a 
consistent way at different spatial and tem­
poral  scales.  Since  the  description  of  fuel 
proprieties  is  usually  very  complex,  fire 
managers have tried to summarize the phys­
ical  parameters  and  spatial  distribution  of 
fuel in different classes also known as “fuel 
models”  (Anderson  1982,  Burgan  &  Ro­
thermal  1984).  More  specifically,  a  fuel 
model  has  been defined as "an identifiable 
association  of  fuel  elements  of  distinctive 
species,  form,  size,  arrangement,  and  con­
tinuity that will exhibit characteristic fire be­
haviour  under  defined  burning  conditions" 
(Merrill & Alexander 1987). The spatial dis­
tribution  of  the  fuel  characteristics  can  be 
displayed as fuel type maps.

Northern  Forest  Fire  Laboratory  (NFFL) 
system  (Albini  1976)  is  the  most  common 
and  well-know  fuel  model  that  was  de­
veloped taking the vegetation structure and 
characteristic  of  the  North-American floras 
in to account. Recently, in the framework of 
the  Prometheus  project  (1999),  a  new fuel 
type  classification  system  was  specifically 
developed to better represent the fuel charac­
teristic  of  the  Mediterranean  ecosystems 
(http://kentauros.rtd.algo.com.gr/promet/ind­
ex.htm, Algosystems SA, Greece). This clas­
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Abstract: Fuel types is one of the most important factors that should be taken 
into consideration for computing spatial fire hazard and risk and simulating fire 
growth and intensity across a landscape. In the present study, forest fuel map­
ping is considered from a remote sensing perspective. The purpose is to delin­
eate forest types by exploring the use of coarse resolution satellite remote 
sensing MODIS imagery. In order to ascertain how well MODIS data can provide 
an exhaustive classification of fuel properties a sample area characterized by 
mixed vegetation covers and complex topography was analysed. The study area 
is located in the South of Italy. Fieldwork fuel type recognitions, performed 
before, after and during the acquisition of remote sensing MODIS data, were 
used as ground-truth dataset to assess the obtained results. The method com­
prised the following three steps: (I)  adaptation of Prometheus fuel types for 
obtaining a standardization system useful for remotely sensed classification of 
fuel  types  and  properties  in  the  considered  Mediterranean  ecosystems;  (II) 
model construction for the spectral characterization and mapping of fuel types 
based on two different approach, maximum likelihood (ML) classification al­
gorithm and spectral Mixture Analysis (MTMF); (III) accuracy assessment for the 
performance evaluation based on the comparison of MODIS-based results with 
ground-truth.  Results  from  our  analyses  showed  that  the  use  of  remotely 
sensed MODIS data provided a valuable characterization and mapping of fuel 
types being that the achieved classification accuracy was higher than 73% for 
ML classifier and higher than 83% for MTMF.
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Tab. 1 - Fuel types classification (Prometheus S.V. Project 1999).

1 Ground fuels (cover >50%) grass
2 Surface fuels (shrub cover 

>60%, tree cover < 50%)
grassland, shrubland (smaller than 0.3-0.6 m and with a 
high percentage of grassland), and clearcuts, where slash 
was not removed

3 Medium-height shrubs (shrub 
cover >60%, tree cover < 
50%)

shrubs between 0.6 and 2.0 m

4 Tall shrubs (shrub cover 
>60%, tree cover < 50%)

high shrubs (between 2.0 and 4.0 m) and young trees res­
ulting from natural regeneration or forestation

5 Tree stands (>4 m) with a 
clean ground surface (shrub 
cover < 30%)

the ground fuel was removed either by prescribed burn­
ing or by mechanical means. This situation may also oc­
cur in closed canopies in which the lack of sunlight in­
hibits the growth of surface vegetation

6 Tree stands (>4 m) with medi­
um surface fuels (shrub cover 
>30%)

the base of the canopies is well above the surface fuel 
layer (>0.5 m). The fuel consists essentially of small 
shrubs, grass, litter, and duff

7 Tree stands (>4 m) with heavy 
surface fuels (shrub cover 
>30%)

stands with a very dense surface fuel layer and with a 
very small vertical gap to the canopy base (< 0.5 m)



Lanorte A & Lasaponara R - iForest 1: 60-64 

sification is principally based on the height 
and density of fuel, which directly influence 
the  intensity  and  propagation  of  wildfire 
(Tab. 1).

Due to the complex nature of fuel charac­
teristic a fuel map is considered one of the 
most  difficult  thematic  layers  to  build  up 
(Keane et al. 2000) especially for large areas. 
Aerial  photos have been the most common 
remote sensing data source traditionally used 
(Morris  1970,  Muraro  1970,  Oswald et  al. 
1999)  for  mapping  fuel  types  distribution. 
Nevertheless,  remote  sensing  multispectral 
data can be an effective data source available 
at different temporal and spatial scales that 
can be fruitfully adopted for building up fuel 
type maps from global, region down to local 
scale.  For  this purpose,  up to now, several 
satellite sensors have been used in last dec­
ades.  For  example,  NOAA-AVHRR  (Ad­
vanced  Very  High  Resolution  Radiometer) 
data were used by McKinley et al. (1985) for 
mapping fuel types in western United States. 
Landsat  Thematic  Mapper  data  were  used 
for  mapping fuels  models  in  Yosemite  na­
tional Park, USA (Van Wagtendonk & Root 
2003), and in Spain (Cohen 1989, Riaño & 
Chuvieco 2002, Salas & Chuvieco 1994). A 
multisensor  approach  based  on  Spot  and 
Landsat  imager  was  adopted  by  Castro  & 
Chuvieco (1998) to perform a classification 
of fuel types for Chile by using an adapted 
version  of  Anderson’s  system.  The  ac­
curacies  obtained  from  these  researches 
ranged from 65% to 80% (Chuvieco 1999). 
The accuracy level  is  strongly related with 
fuel  presence  and  spatial  distribution  (how 
many and where) and with specific environ­
mental  conditions  (topography,  land  cover 
heterogeneity, etc.). The importance of using 
multisensor  data source to  map fuel  model 
was emphasised by many authors (Keane et 
al. 2001).

Although  the  recognized  feasibility  of 
satellite sensors traditionally used for the re­
mote characterization of fuel  types,  the ad­

vent  of  new sensors  with  improved spatial 
and spectral resolutions may improve the ac­
curacy  (Chuvieco  &  Congalton  1989)  and 
reduce the cost of forest fire fuel mapping. 
Up  to  now,  fire  researchers  did  not  paid 
enough attention to the potentiality of using 
remote  sensing  MODIS  data  to  map  fuel 
types and properties.

This research aims to investigate the use­
fulness of coarse scale satellite data, such as 
MODIS  imagery,  to  characterize  and  map 
fuel  types  in  fragmented  ecosystems.  This 
objective  is  achieved  by using  Prometheus 
model coupled with MODIS data that were 
analysed  by  using  Maximum  Likelihood 
(ML) classifier and Spectral Mixture Analys­
is  (MTMF)  for  a  test  case  (located  in  the 
south of Italy) that is highly representative of 
Mediterranean like ecosystems.

Study area
The selected study area (Fig. 1) is located 

in the South of Italy. The study area extends 
over a territory of about 800000 hectares in 
the Basilicata and Calabria Regions. It con­
stitutes a complex morphological unit and it 
is characterized by complex topography with 
altitude varies from 0 to 2300 m above sea 
level  (a.s.l.)  and  mixed  vegetation  covers. 
Between 0 to 600 m a.s.l., natural vegetation 
constituted  by  Mediterranean  scrubs  and 
sclerophyllus vegetation is prevailing. From 
600 to 1000-1200 m a.s.l.  the vegetation is 
prevailing  constituted  by extensive  popula­
tions  of  Quercus  pubescens and  woods  of 
Turkey  oaks (Quercus  cerris).  Degradation 
forms are evident, here present as xerophytic 
prairies and substitution bushes. The higher 
horizons  are  constituted  by  beech  woods 
(Fagus  sylvatica)  which  arrive  up  to  the 
1900 meters a.s.l. of altitude. In the Sila area 
(mountainous  system  of  region),  between 
1000 and 1900 m a.s.l., the more diffuse and 
important  specious is the Calabrian Laricio 
pine (Pinus Nigra var. calabrica).

Materials and Methods

Dataset MODIS
MODIS  (Moderate  Resolution  Imaging 

Spectroradiometer)  is  a  key  instrument 
aboard  the  and  satellites.  Terra’s  orbit 
around the Earth  is timed so that  it  passes 
from north to south across the equator in the 
morning, while  Aqua passes south to north 
over  the  equator  in  the  afternoon.  Terra 
MODIS,  launched  on  December  18,  1999 
and  Aqua  MODIS,  launched  on  May  4, 
2002, are viewing the entire Earth’s surface 
every 1 to 2 days, acquiring data in 36 spec­
tral bands, or groups of wavelengths. These 
data will improve our understanding of glob­
al dynamics and processes occurring on the 
land, in the oceans, and in the lower atmo­
sphere. MODIS is playing a vital role in the 
development of validated, global, interactive 
Earth system models able to predict  global 
change  accurately  enough  to  assist  policy 
makers in making sound decisions concern­
ing the protection of our environment.

The MODIS instrument provides high ra­
diometric  sensitivity (12 bit)  in 36 spectral 
bands ranging in wavelength from 0.4 µm to 
14.4 µm. The responses are custom tailored 
to  the  individual  needs  of  the  user  com­
munity  and provide  exceptionally  low out-
of-band response. Two bands are imaged at a 
nominal  resolution of 250 m at  nadir,  with 
five  bands at  500 m and the remaining 29 
bands at 1 km. A ± 55-degree scanning pat­
tern at the EOS orbit of 705 km achieves a 
2330-km swath and provides  global  cover­
age every one to two days.

The MODIS bands used in this work (Tab.
2) are the first seven corresponding to a spa­
tial resolution of 250 and 500 m: this choice 
was performed because these spectral bands 
are suitable for the study of vegetation char­
acteristics.  The  MODIS data  used  for  this 
study were acquired on July, 2003.

Additionally,  photos  and  air  photos  were 
obtained  for  the  investigated  area  immedi­
ately before and after the acquisition of satel­
lite MODIS data. Fieldwork fuel typing were 
performed  using  a  global  position  system 
(GPS) for collecting geopositional data (latit­
ude and longitude). Air photos and fieldwork 
fuel types were used as a ground-truth data­
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Fig. 1 - Study area: (A) Location of the study area in MODIS image July 2003 band 1 (red); 
(B) RGB composition (bands 1-4-3) of MODIS spectral channels for the study area.

Tab. 2 - Modis spectral bands.

Bands
Lower 
edge
  µm 

Upper 
edge
 µm 

Pixel Re­
solution

 (m)
1 0.62 0.67 250
2 0.84 0.88 250
3 0.46 0.48 500
4 0.545 0.565 500
5 1.230 1.250 500
6 1.628 1.652 500
7 2.105 2.155 500
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set firstly to identify the fuel types defined in 
the  context  of  Prometheus  system,  and 
secondly, to evaluate performance and res­
ults  obtained  for  the  considered  test  area 
from the MODIS data processing.

Prometheus adaptation
Only  natural  vegetated  areas  were  con­

sidered  for  the  fuel  type  characterization. 
The seven fuel type classes standardized in 
the  context  of  Prometheus system (Tab.  3) 
were  detailed  identified  and  carefully  veri­
fied for the study area on the basis of field 
works performed before, during and after the 
acquisition of MODIS remote sensing data. 
In particular, photos and air photos, taken for 
the  investigated  region  immediately  before 
and  after  the  acquisition  of  MODIS  data, 
along with the fuel types recognized in the 
field  were  used  for  this  purpose.  Fig.  2 
shows the results obtained from the adapta­
tion of Prometheus system to the character­
istics and properties of fuel types present in 
the investigated test area. Significant patches 
corresponding  to  areas  representative  for 
each fuel class were carefully identified over 
the  MODIS  images  by  using  geo-position 
data (latitude and longitude) collected during 
the ground surveys by means of a GPS posi­
tioning system. Pixels relating to these areas 
were exploited for performing the selection 
of  adequate  Region  of  Interest  point 
(Ground-Truth dataset) for the seven classes 
(fuel types) with the addition of 1 class con­
cerning  areas  having  no  Fuel.  The  sample 
points of Ground-Truth dataset were selected 
in the same areas subject to direct check on 
field in order to be used firstly to identify the 
fuel types defined in the context of Prometh­
eus  system,  and secondly,  to  evaluate  per­

formance and results  obtained for  the  con­
sidered test area from the MODIS data pro­
cessing. For this reason, pixels correspond­
ing  to  the  given  Ground-Truth  areas  were 
subdivided  in  to  testing  data  and  training 
data through randomization of the pixels to 
50% for every class.

Model construction and comparison
The mapping of fuel types was obtained by 

using both a supervised classification based 
on  Maximum  Likelihood  (ML)  algorithm 
and  Spectral  Mixture  Matched  Filtering 
(MTMF).  The  ML  classifier  is  considered 
one of the most important  and well-known 

image classification  methods due to  its  ro­
bustness  and simplicity.  It  is  wide  used  in 
vegetation  and  land  cover  mapping. 
Moreover, it was also tested for fuel model 
distribution (Riano & Chuvieco 2002). The 
ML method quantitatively evaluates the vari­
ance  and  covariance  of  the  spectral  signa­
tures when classifying an unknown pixel as­
suming at the same time a Gaussian distribu­
tion of points forming a cluster of a vegeta­
tion class. Under this assumption the distri­
bution of a class is  described by the mean 
vector and covariance matrix which is used 
to  compute  the  statistical  probability  of  a 
given pixel value being a member of a par­
ticular class. The probability for each class is 
calculated  and  the  class  with  the  highest 
probability is assigned the pixel (Lillesand & 
Kiefer  2000).  As  above  reported,  the  ML 
classifier is based on the assumption that dif­
ferent variables used in the computation are 
normally  distributed.  This  assumption  is 
generally considered acceptable for common 
spectral response distribution, but it could be 
untenable in mixed land cover compositions. 
In this conditions, as pixels increase in size, 
the proportion of mixed cover type distrib­
uted at pixel level will likewise increase and 
information at the sub-pixel level will be of 
increasing  interest.  Consequently,  in  frag­
mented landscapes conventional “hard” im­
age classification techniques provide only a 
poor basis for the characterization and map­
ping of fuel types giving, in the best case, a 
compromised accuracy, or, in the worst case, 
a totally incorrect classification.

In these conditions, the use of spectral mix­
ture analysis (MTMF) can reduce the uncer­
tainty in hard classification techniques since 
it is able to capture, rather than ignore, sub­
pixel  heterogeneity. The MTMF allows for 
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Tab. 3 - Fuel type and vegetation typologies adapted from Prometheus system for the study 
area.

No fuel Plowed and bare soils
Woody cultivations
Sowed lands
Calcareous cliffs and detritus
Sea, course and water bodies

fuel type 1 Natural grassland and pastures
fuel type 2 Moors, Uncultivated soils, Substitution bushes, Shrubby grassland, 

Garigues
fuel type 3 Moors, Uncultivated soil, Substitution bushes, Shrubby grassland, 

Garigues
fuel type 4 Sclerophyllus vegetation

Mediterranean shrubs
fuel type 5 Coniferous forest

Beech forest
Broad- leaved mixed forest

fuel type 6 Broad-leaved mixed forest

fuel type 7 Broad-leaved mixed forest
Transitional woodland-scrub

Fig. 2 - Fuel maps obtained from the processing of MODIS data: (A) Modis ROI; (B) Modis 
ML classification; (C) Modis MTMF classification.
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classifying  the  proportions  of  the  ground 
cover  types  (end-member  classes)  covered 
by  each  individual  pixel.  End-member 
classes can be taken from “pure” pixels with­
in an image or from spectral libraries. Over 
the years, different models of spectral mix­
tures have been proposed (Ichku & Karnieli 
1996).  Among  the  available  models,  the 
most  widely  used  is  the  Mixture  Tuned 
Matched  Filtering  (MTMF  -  Harsanyi  & 
Chang 1994, Boardman et al. 1995, Board­
man 1998) that is based on the assumption 
that the spectrum measured by a sensor is a 
linear combination of the spectra of all com­
ponents within the pixels.

In our case, on the basis of ground surveys 
and air photos, we selected the Region Of In­
terest (ROI) corresponding to the considered 
seven fuel types, plus 1 additional class re­
lated to no fuel regions. Pixels belonging to 
each of the considered ROI were randomly 
separated into training data and testing data, 
used for the both the classification (ML and 
MTMF) and accuracy evaluation.

Results
The Fig. 2 shows the mapping of fuel types 

obtained for the investigated test area from 
the MODIS images. Such map presents very 
high  user’s  accuracy.  For  the  accuracy as­
sessment we consider the producer accuracy, 
user accuracy, and overall accuracy, that are 
defined as follows.

The producer’s accuracy is a measure in­
dicating the probability that the classifier has 
correctly  labelled  an  image  pixel,  for  ex­
ample, into Fuel Type 1 class given that, on 
the basis of ground recognition such a pixel 
belongs to Fuel Type 1 class. The user’s ac­
curacy is a measure indicating the probabil­
ity that a pixel belongs to a given class and 
the classifier has labelled the pixel correctly 
into the same given class. The overall accur­
acy is calculated by summing the number of 
pixels  classified  correctly  and  dividing  by 
the total number of pixels. Finally, the kappa 
statistics  (K) was also considered.  It  meas­

ures  the  increase  in  classification  accuracy 
over that of pure chance by accounting for 
omission and commission error  (Congalton 
&  Green  1998).  Overall  accuracy  is  com­
puted as the sum of the number of observa­
tions correctly classified (class1, as class 1, 
class 2 as class 2, etc.) divided by the total 
number of observations. This is equivalent to 
the “diagonal” of a square contingency table 
matrix divided by the total number of obser­
vations  described  in  that  contingency table 
(Congalton & Green 1998).

The  Tab.  4 shows  the  accuracy  coeffi­
cients.  Results  from  our  analyses  showed 
that the use of remotely sensed MODIS data 
provided  a  valuable  characterization  and 
mapping  of  fuel  types  being  that  the 
achieved classification accuracy was higher 
than 73% for ML classifier and higher than 
83% for MTMF.

Using the MTMF classification the produ­
cer  accuracy values  improved compared to 
those  obtained  from  the  ML  classification 
for  six of  the eight  considered fuel  classes 
(Tab. 5). In particular, the biggest improve­
ments were in correspondence of fuel type 3 
(12.76%), fuel type 6 (13.99%) and no fuel 
(14.43%). The decrease for fuel type 2 was 
very  low  (1.61%),  while  fuel  type  1  de­
creases of 12.82 percentage points. The user 
accuracy  also  increased.  In  particular,  the 
most  significant  improvements  are  for  fuel 
type 1 (28.57%), fuel type 5 (18.32%), fuel 

type 7 (17.57%) and fuel type (16.34%). The 
decrease for no fuel class is insignificant.

As a whole, results  from this preliminary 
analysis  showed  that  the  use  of  unmixing 
technique allows an increase in accuracy at 
around  10% for  both  the  overall  accuracy 
and the Kappa Statistic (k) compared to the 
accuracy level obtained by applying a widely 
used  classification  algorithm.  Such  results 
indicate that both the classification and spec­
tral unmixing methods can produce reason­
ably accurate mapping of fuel type.

The mistakes of classification, their attribu­
tion in the different classes and the import­
ance of the unmixing, can be verified in the 
following comparisons:
• In  MLC No fuel  class  and Ft3  present  a 

high Mixing what consists in a very strong 
pixel “transfer” (83 pixel) from No Fuel to­
ward Fuel type 3, due above all to mistakes 
of selection of the ROI. MTMF, even if not 
removing the mistake, decreases the “trans­
fer” to 33 pixels and so of beyond 60%.
• In MLC, Ft5 and Ft6 present a high “ex­

change”  of  pixel  because  the  Classifier 
“moves” 19.73% of the pixels attributed in 
the Ground-Truth Dataset to Fuel type 5 to­
ward Fuel type 6 and 22% to Fuel type 6 
toward  Fuel  type  5.  The  mistake  goes 
above all attributed what to the difficulty to 
select distinct Ground-Truth Points for the 
two classes, which are very like as regards 
the vegetational  characteristics,  being dif­
ferent  above all  on the structural  plan.  In 
this case MTMF decreases the mistake of 
beyond 40%.
• In MLC Ft5 e Ft7 show a very high mixing 

that  consist  in  a  “transfer”  of  pixel  from 
Ft7  to  Ft5  equivalent  to  27.42%  of  the 
pixels attributed in the Ground-Truth Data­
set to Fuel type 7. Also in this case the mis­
take goes above all attributed what to the 
difficulty  to  select  distinct  Ground-Truth 
Points for the two classes, which are very 
like as regards the vegetational  character­
istics, for some of the typologies included 
in  two  classes.  MTMF  decreases  the 
“transfer” from 17 to 6 pixels with an im­
provement, therefore, of almost 65%.
• In  MLC  there  is  a  moderate  mixing 

between Ft7 and Ft4 which share some ve­
getational  typologies;  in  the  specific  case 
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Tab. 4 - Accuracy levels from MLC and MTMF.

CLASS
MCL MTMF

Producer
Accuracy (%)

User
Accuracy (%)

Producer
Accuracy (%)

User
Accuracy (%)

Fuel type 1 89.74 71.43 76.92 100.00
Fuel type 2 82.26 68.00 80.65 73.53
Fuel type 3 62.77 36.65 75.53 52.99
Fuel type 4 92.06 85.29 92.06 89.23
Fuel type 5 76.87 62.09 80.95 80.41
Fuel type 6 67.37 77.56 81.36 82.76
Fuel type 7 48.39 63.83 56.45 81.40
No fuel 77.26 97.23 91.69 95.66

- Overall Accuracy = 73.83 
 %Kappa Coefficient = 0.6763

Overall Accuracy = 83.63
 %Kappa Coefficient = 0.7924

Tab. 5 - Change in classification matrix.

Class User Acc.
 MLC

User Acc.
 MTMF

Change
 User Acc.

Prod. Acc.
 MLC

Prod. Acc.
 MTMF

Change
 Prod. Acc.

Fuel type 1 71.43 100.00 28.57 89.74 76.92 -12.82
Fuel type 2 68.00 73.53 5.53 82.26 80.65 -1.61
Fuel type 3 36.65 52.99 16.34 62.77 75.53 12.76
Fuel type 4 85.29 89.23 3.94 92.06 92.06 0.00
Fuel type 5 62.09 80.41 18.32 76.87 80.95 4.08
Fuel type 6 77.56 82.76 5.20 67.37 81.36 13.99
Fuel type 7 63.83 81.40 17.57 48.39 56.45 8.06
No fuel 97.23 95.66 -1.57 77.26 91.69 14.43
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the classifier “moves” 11.29% of the pixels 
attributed  in  the  Ground-Truth  Dataset  to 
Fuel type 7 toward Ft4. MTMF decreases 
the "transfer" with an improvement of bey­
ond 40%.
• In MLC No fuel and Ft1 show a moderate 

mixing  with  an  “exchange”  equivalent  to 
12 pixels probably because there is a pres­
ence of typical grass species in a few cul­
tivated areas. MTMF decreases the mistake 
to 7 pixels with an improvement of beyond 
40%.
• Instead,  the  improvements  in  the  Mixing 

levels between Ft2 and Ft3 are much less 
clear. In MLC between two classes, which, 
to the Modis spatial resolution can be dif­
ferentiated almost exclusively on the struc­
tural  plan,  there  is  a  very high (27)  “ex­
change”  of  pixels.  MTMF  decreases  the 
mistake only by 18%. The same considera­
tion can be done for Ft6 and Ft7 in which 
the improvement is of 25%.
•The only negative comparison is between 

Ft3  and  Ft6  in  which  MTMF as  regards 
MLC  provides  a  worse  result  of  almost 
40%, probably because the Unmixing un­
derlines the mistakes already present in the 
step of selection of the ROI.

Conclusions
Multispectral  MODIS data  were  analysed 

for a test area of southern Italy to ascertain 
how  well  coarse  remote  sensing  data  can 
characterize fuel type and map fuel proper­
ties.  Fieldwork fuel  type  recognitions,  per­
formed at the same time as remote sensing 
data acquisitions, were used as ground-truth 
dataset to assess the results obtained for the 
considered test  area.  Results  from our ana­
lyses showed that the use of remotely sensed 
MODIS data provided a valuable character­
ization and mapping of fuel types being that 
the  achieved  classification  accuracy  was 
higher than 73% for ML classifier and higher 
than 83% for MTMF.

Thus, showing that the use of an unmixing 
technique allows an increase in accuracy of 
around 10% compared to the accuracy level 
obtained  by  applying  a  widely  used  hard 
classification algorithm. Both the classifica­
tion and the spectral unmixing methods can 
produce reasonably accurate mapping of fuel 
type. Nevertheless, it is more challenging to 
use the spectral unmixing techniques to de­
rive fuel type mapping at the subpixel scale.

Results obtained from these investigations 
can  be  directly  extended  to  Mediterranean 
like ecosystems.

The approach proposed in this work can be 
fruitfully applied to different remote sensed 
data, such as Quickbird, Ikonos, SPOT, AS­

TER,  Landsat  Thematic  Mapper,  or  En­
hanced Thematic Mapper, NOAA- AVHRR, 
SPOT-VEGETATION, characterized by dif­
ferent  spatial  and  spectral  resolution  for 
mapping  fuel  properties  at  different  spatial 
scale from landscape to regional level.

References
Albini  FA (1976).  Estimating wildfire behaviour 

and  effects.  General  Technical  Report.  USDA 
Forest Service, Intermountain Forest and Range 
Experiment Station INT-30. Ogden, Utah, pp. 1-
92.

Anderson  HE (1982).  Aids to  determining  fuels 
models  for  estimating  fire  behaviour.  USDA 
Forest Service, Intermountain Forest and Range 
Experiment  Station  General  Technical  Report 
INT-122. Ogden, Utah, pp. 22.

Boardman JW (1998). Leveraging the high dimen­
sionality of AVIRIS data for improved sub-pixel 
target unmixing and rejection of false positives: 
mixture  tuned matched  filtering.  Summaries  of 
the  Seventh  JPL  Airborne  Geoscience  Work­
shop.  JPL  Publication  97-1,  55-56.  NASA  Jet 
Propulsion Lab., Pasadena, California, USA.

Boardman JW, Kruse FA, Green RO (1995). Map­
ping  target  signatures  via  partial  unmixing  of 
AVIRIS data.  Summaries  of the Fifth JPL Air­
borne  Geoscience  Workshop,  JPL  Publication 
95-1,  23-26.  NASA  Jet  Propulsion  Lab.,  Pas­
adena, California, USA.

Burgan R, Rothermal RC (1984). BEHAVE: fire 
behaviour prediction and fuel modelling system-
FUEL subsystem. USDA Forest Service General 
Technical Report INT-167, pp. 126.

Castro  R,  Chuvieco  E  (1998).  Modelling  Forest 
Fire danger From Geographic Information Sys­
tem. Geocarto International, 13: 15-23.

Chuvieco E (1999). Remote sensing of large wild­
fires in European Mediterranean basin. Springer-
Verlag, Berlin, pp. 122.

Chuvieco E, Congalton RG (1989). Application of 
remote sensing and geographic information sys­
tems to forest fire hazard mapping. Remote Sens­
ing of the Environment 29: 147-159.

Chuvieco  E,  Cocero  D,  Aguado  I,  Palacios  A, 
Preado E (2004).  Improving  burning efficiency 
estimates  through  satellite  assessment  of  fuel 
moisture  content.  Journal  of  Geophysical  Re­
search 109: D14-S07.

Cohen  WB  (1989).  Potential  utility  of  the  TM 
tasseled cap multispectral data transformation for 
crown  fire  hazard  assessment.  ASPRS/ACSM 
annual convention proceedings:  Agenda for the 
90’s.  Volume 3. Baltimore, Maryland, pp. 118-
127

Congalton RG, Green K (1998). Assessing the ac­
curacy  of  remotely  sensed  data.  CRC  Press, 
Lewis Publishers, Boca Raton, Florida, USA.

FAO (2001). Global forest fire assessment 1990-
2000. Forest Resources Assessment Programme, 

working paper n. 55 [online] URL: http:/www.­
fao.org:80/forestry/fo/fra/docs/Wp55_eng.pdf

Harsanyi JC, Chang C (1994). Multispectral image 
classification  and  dimensionality  reduction:  an 
orthogonal  subspace  projection  approach.  IEEE 
Trans. Geosci. Remote Sens. 32: 779-785.

Ichku C, Karnieli A (1996). A review of mixture 
modelling techniques for sub-pixel land cover es­
timation. Remote Sensing Reviews 13: 161-186.

Keane RE, Mincemoyer  SA, Schmidt  KA, Long 
DG, Garner JL (2000). Mapping vegetation and 
fuel  for  fire  management  on  the  Gila  National 
Forest  Complex,  New  Mexico.  USDA  Forest 
Service General  Technical Report RMRS-GTR-
46-CD.

Keane RE, Burgan R, van Wagtendonk J (2001). 
Mapping  wildland  fuels  for  fire  management 
across multiple  scales:  Integrating remote sens­
ing, GIS, and biophysical modelling. Internation­
al Journal of Wildland Fire 10 (3-4): 301-319.

Lillesand TM, Kiefer RW (2000). Remote sensing 
and  image  interpretation.  John  Wiley  &  Sons, 
New York, USA.

McKinley RA, Chine EP, Werth LF (1985). Oper­
ational fire fuels mapping with NOAA-AVHRR 
data. American Society for Photogrammetry and 
Remote Sensing, Falls Church, Virginia, pp. 295-
304.

Merrill  DF,  Alexander  ME  (1987).  Glossary  of 
forest fire management terms. National Research 
Council  of  Canada,  Committee  for  Forest  Fire 
Management, Ottawa.

Morris WG (1970). Photo inventory of fine log­
ging  slash.  Photogrammetric  Engineering  36: 
1252-1256.

Muraro SJ (1970). Slash fuel inventories from 70 
mm low-level photography. Ottawa, Ontario, Ca­
nadian Forest Service: 63.

Oswald BP, Fancher JT, Kulhavy DL, Reeves HC 
(1999).  Classifying  fuels  with  Aerial  Photo­
graphy  in  East  Texas.  International  Jurnal  of 
Wildland Fire 9 (2): 301-319.

Riaño D, Chuvieco E (2002). Generation of fuel 
type maps from Landsat-TM images and auxili­
ary data in Mediterranean ecosystem. Alcalà de 
Henares (Spain), Department of Geography, Al­
calà de Henares University.

Salas J, Chuvieco E (1994). Geographic informa­
tion system for wildland fire risk mapping. Wild­
fire 3 (2): 7-13

Van Wagtendonk JW, Root RR (2003). The USE 
of multitemporal Landsat Normalized Difference 
Vegetation Index (NDVI) data for mapping fuels 
models in Yosemite national Park, USA. Interna­
tional Journal of remote Sensing 24: 1639-1651.

Vila  M,  Lloret  F,  Ogheri  E,  Terradas  J  (2001). 
Positive  fire-grass  feedback  in  Mediterranean. 
basin  shrubland.  Forest  Ecology  and  Manage­
ment 147: 3-14.

© SISEF http://www.sisef.it/iforest/ 64 iForest (2008) 1: 60-64


	Fuel type characterization based on coarse resolution MODIS satellite data 
	Introduction
	Study area
	Materials and Methods
	Dataset MODIS
	Prometheus adaptation
	Model construction and comparison

	Results
	Conclusions
	References


