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Introduction
Ectomycorrhizal (ECM) fungi are obligate 

plant mutualists and they are among the most 
functionally  important  soil  organisms  in 
forest  ecosystems  (Smith  &  Read  2008). 
However, as the delimitation and identifica-
tion  of  many ECM  species  is  problematic 
and their life cycles largely subterranean, the 
geographic ranges for species are unknown. 
There is a need to establish current distribu-
tions in the face of changing environmental 
conditions, because without them even large 
changes in mycorrhizal distributions may go 
undetected.

Some  ECM  fungal  species  have  conspi-
cuous fruiting bodies that can thus be used 
to  generate  species  distribution  maps,  e.g., 
Amanita phalloides (Wolfe et al. 2010). This 
is often not possible as many ECM species 
are  cryptic  and  difficult  to  observe  in  this 
fashion,  e.g.,  truffles and resupinate  crusts. 

For these fungi an approach using their my-
corrhizas for identification is more practical. 
DNA sequences  of  the  internal  transcribed 
spacer (ITS) region of the nuclear ribosomal 
DNA provide a universal genetic marker for 
fungi. This study makes use of their growing 
availability in online DNA databases to ob-
tain spatial  presence data for  ECM species 
thus far unmapped.

Ryberg et al. (2008) studied the strength of 
GenBank  for  meta-analysis  and  identifica-
tion of ECM fungi with a focus on illustra-
ting the gaps in identification for the genus 
Inocybe, but they also analysed the location 
of fungal species from GenBank providing a 
rough idea of their distribution on a whole-
country  basis.  This  was  an  early  example 
demonstrating the  potential  for  a DNA se-
quence  method  for  mycorrhizal  mapping. 
Two recent studies have applied spatial data 
on fungal presence to generate Species Dis-
tribution  Models  (SDM).  Wollan  et  al. 
(2008) used herbarium mushroom records to 
create a fungal SDM for Norway, and Wolfe 
et al.  (2010) gathered mushroom data from 
Europe to create a powerful predictive SDM 
for North American Amanita phalloides. The 
application  of  MAXENT  software  shows 
promising results for niche modelling based 
on presence-only data (Wollan et  al.  2008) 
which  are often the only data available  for 
fungi. Before applying niche modelling soft-
ware this study sought to test the quality of 
DNA data  and  the available  environmental 
layers.

Studies  by  Cox et  al.  (2010a,  2010b) in-
ferred ECM responses to nitrogen deposition 
at  large  geographic  scales  that  differ  from 

those at local scales. Here too the argument 
was made for using DNA to identify ECM in 
large-scale spatial analysis, but the problems 
and  methodological  incongruences  of com-
bining multiple studies were also noted. To 
enable  this  new facet  of  mycorrhizal  eco-
logy, Lilleskov & Parrent (2007) called for a 
unified  approach  to  fungal  root  sampling. 
We envision that georeferenced fungal DNA 
sequence  data  will  continue  to  accumulate 
rapidly  to  eventually  reveal  fungal  species 
distributions.  This study explores what sig-
nal indicating the environmental preferences 
of  ECM  might  be  already  hidden  in  the 
growing online databases.

Methods
Twenty different ECM fungi were delimi-

ted  to  species  level  using  ITS  DNA  se-
quences  from  ectomycorrhizas;  these  were 
found to be among the most common ECM 
present at diverse forest and heathland sites 
(Collier  &  Bidartondo  2009,  Cox  et  al. 
2010a).  Location  points  from Europe  were 
gained  using  NCBI-BLAST  matches  from 
the Genbank and UNITE databases (Fig. 1). 
High thresholds of similarity were employed 
(97% for Basidiomycetes and 98% for Asco-
mycetes -  Nilsson et al. 2006) with a mini-
mum sequence coverage of 80% and a mini-
mum sequence length of 400bp to improve 
confidence of species matches.

In some cases annotated data on GenBank/ 
UNITE records was used to establish latitude 
and  longitude  coordinates,  but  as  this  in-
formation was often unavailable,  associated 
publications  were  used  to  establish  source 
locations. In two cases authors were contac-
ted directly and responded with coordinates 
(Yarwood  SA  &  Rudawaska  M,  pers. 
comm.). Where there were insufficient data 
for a BLAST match the point was discarded.

Bioclimatic,  altitude  and  soil  pH  values 
were extrapolated from the presence of these 
various  fungi  using  layers  obtained  from 
United  Nations  Spatial  Data  Infrastructure 
(nitrogen,  soil  pH,  drainage)  WorldClim 
(bioclimatic  and  altitude  -  Hijmans  et  al. 
2005)  in  ArcGIS.  These  different  species 
were  then  tested  through  randomisation 
using R version 2.7.2 to examine significant 
environmental  variables.  Gathered  values 
were put into a matrix and randomised 1000 
times.  Where  values  were  below 0.05,  the 
observed  environmental  variables  for  that 
species  were  considered  significantly  non-
random.

In  a  separate  analysis,  presence  data 
gathered for  three of the tested fungi  were 
gathered  from a  source  that  includes  mor-
phologically identified specimen records, the 
Global  Biodiversity  Information  Facility 
(GBIF  2009),  and  compared  with  the  data 
gathered from DNA databases to address is-
sues of data quantity and quality.
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We used DNA sequences of 20 ectomycorrhizal fungal species obtained from 
roots in Britain and Germany to find location data within Europe for these fungi 
in the public DNA databases. These data were used to plot species presence on 
maps, environmental layers were laid over these maps, and information from 
those sites was extrapolated using geographic information systems. Through 
randomization tests the significant factors for each species from available data 
were tested. Similar methodology was used for fungal samples identified using 
morphology from the Global Biodiversity Information Facility to compare data 
quality and quantity. This analysis exposed the need for uniform methodology 
and greater distribution of sampling in order to create viable species distribu-
tion models for ectomycorrhizas.
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Results
The total data set for all 20 species was 321 

points. Sample sizes per species ranged from 
35  Xerocomus badius to 9  Thelephoraceae  
spp. The most significant results relate to the 
annual mean temperature (Tab. 1). There is 
strong evidence that the results extrapolated 
from that data are non-random.

When  a  similar  analysis  was  carried  out 
using data from GBIF, the much larger size 
of  the  data  set  per  species  should  have 
provided  a  more  representative  result  (183 
for  Elaphomyces  granulatus against  13 
BLAST matches).  However,  these  samples 
suffered  heavily  from  spatially  autocorre-
lated sampling with over half of the samples 
for  Lactarius  rufus  and  Xerocomus  badius  
originating  from Norway.  In  an  attempt  to 
compensate for this, randomised sub-sets of 
the data were generated and used in the stati-
stical tests.

Discussion
Overall,  the  bioclimatic  variables  yielded 

more significant results than the other envi-
ronmental layers. Variables such as soil pH 
have a proven effect on the presence of dif-
ferent  ectomycorrhizas  (Hung  &  Trappe 
1983), as well as on the presence of different 
host  tree  species.  The  lack  of  significance 
when extrapolating from their values in this 
analysis is likely to be a result of high varia-
bility at local scales (e.g., nested pockets of 
high acidity)  and low layer resolution.  The 
significant results found through this analy-
sis,  in  particular  those  of  the  bioclimatic 
variables (Hijmans et al. 2005), were extra-
polated from layers of much higher resolu-
tion.  These types of variables are more ac-
curately  quantified  at  large  spatial  scales 
than soil variables.

Cox et  al.  (2010b) showed  nitrogen  as  a 
determinant  of fungal  diversity across  geo-

graphical scales but not at a local level. Soil  
nitrogen  was only a  significant  variable  in 
the  present  analysis  in  one  case  with  low 
sample size; this is most likely also due to 
layers of low resolution. This can be seen in 
the  generally high  levels  of  variation  (Fig.
2). If the annotated information on GenBank 
records provided information on soil  nitro-
gen, drainage and pH, then the accuracy of 
environmental layers could be measured by 
comparing values gained in GIS with those 
drawn from GenBank and UNITE, prior  to 
statistical testing.

This  study sought  to  test  the quality  and 
quantity  of  data  available  as  much  as  the 
data itself; thus, our results show a number 
of  areas  which  need  to  be improved  for  a 
DNA-based approach to  be further  used to 
create SDMs. The extent of this study could 
soon  be  improved  with  new ITS  sequence 
data  based  on  next  generation  sequencing 
technologies (Nilsson et al. 2011).

The issue of data quantity and fungal spe-
cies identification is being addressed through 
the continual growth of online databases and 
Hibbett et al. (2011) review the resulting re-
cent progress made in fungal  taxonomy.  In 
order  to  create an SDM a large number of 
location points  is required to  verify the re-
spective  strengths  of  environmental  varia-
bles. That is why this study takes only a pre-
liminary look at a large number of ECM spe-
cies. Biological GIS data may be subject to 
three types of bias: taxonomic, temporal and 
spatial.  Gathering  data  through  the  use  of 
BLAST aims to reduce taxonomic bias. Al-
though there is variability in the reliability of 
morphological identification techniques, ITS 
DNA presents  standardized  reliable  results 
especially if backed up by multi-locus spe-
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Fig. 1 - Spatial locations of all 
data gathered from ITS matches 
using BLAST, from GenBank, 
UNITE 
and associated literature.

Tab. 1 - Fungi from randomisations with significance or near significance for each environ-
mental  variable  (ITS  matches).  (~):  near  significance  values  of  <0.1;  (*):  randomisation  
significance of <0.05; (**): randomisation significance of <0.005.

Variable Species
pH Atheliaceae sp. (n=22)*

Thelephora terrestris (n=27)*
Scleroderma citrinum (n=13)~

Elevation Hydnotrya tulasnei (n=11)*
Drainage Cenococcum sp. (n=14)~
Nitrogen Hydnotrya tulasnei (n=11)*
Annual mean temperature Cantharellaceae sp. (n=18)*

Elaphomyces granulatus (n=13)*
Russula paludosa (n=12)*,
Xerocomus badius (n=34)**

Annual precipitation Piloderma sp. (n=13)*
Cenococcum sp. (n=14)~
Elaphomyces granulatus (n=13)~



Mapping ectomycorrhizal geographic distributions 

cies  delimitation  (e.g.,  Hedh  et  al.  2008). 
Where sporocarp material is relied on, a tem-
poral  bias can only be countered by conti-
nued sampling effort across fruiting periods. 
As this is logistically difficult it may be more 

feasible to use mycorrhizas because they can 
be temporally stable (Cox 2010,  Izzo et al. 
2005, Koide et al. 2007). Spatial bias is cur-
rently the most detrimental to the use of on-
line databases for creating fungal SDMs and 

is illustrated by this analysis. The DNA se-
quences  drawn  from Genbank and  UNITE 
were predominantly from Denmark,  Britain 
and  Sweden  even  though  the  original 
samples  were gathered predominantly from 

© SISEF http://www.sisef.it/iforest/ 254  iForest (2011) 4: 252-255

Fig. 2 - Boxplots for environmental data collected from all ITS sequence sites (including F. Cox sites). (A): pH; (B): elevation (meters above  
sea level); (C): soil drainage (% saturation); (D): soil nitrogen (% of 1%); (E): Annual mean temp (°C x 10); (F): Annual precipitation (mm).  
Boxes represent inter-quartile range, centre bar represents median, whiskers represent 5 th to 95th percentile range.
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Britain  and  Germany.  Results  of  signifi-
cance,  extrapolated  from  fungi  taxa loca-
tions,  were  not  significantly more  spatially 
auto correlated than those  taxa without sig-
nificant  results.  This  indicates  that  spatial 
bias  was  not  responsible  for  significant 
results. Although there are issues of spatial 
bias inherent in this type of data, they are be-
ing addressed through the growth of online 
databases.

Although  the  quantity  of  morphologi-
cally-identified  data  from GBIF  was  large, 
and  some  of  the  results  highly  significant, 
the  spatial  autocorrelation  of  the  data  was 
also high. Even with a randomised subset of 
data taken from Norway,  the proportion  of 
the data from this  area skewed the results. 
For  spatial  analysis  and  particularly  for 
SDMs  a  large  number  of  locations  is  re-
quired  for presence-only data.  However,  as 
there  was  spatial  sampling  bias  for  these 
taxa, in addition to the inherent ambiguity of 
morphologically  identified  fungal  samples, 
this  method would  be better  served by the 
growth of fungal databases.

Large scale range maps for ECM only exist 
for  some  species  at  a  national  level,  are 
based  on  the  presence  of  fruiting  bodies 
(e.g.,  Courtecuisse et al.  2008) and are ab-
sent  from the European  Atlas  of Soil  Bio-
diversity  (Jefferey et  al.  2010).  A standar-
dised sampling method using DNA identifi-
cation and gaining data on ECM community 
composition,  soil  variables  and  location 
would take future analyses closer to SDMs 
for a multitude of species. Cox et al. (2010a) 
highlight  the  potential  of  ICP  Forests  for 
generating  uniform  data  quality.  These 
forests  are  intensively  monitored  for  bio-
diversity,  atmospheric  deposition,  soil  che-
mistry, foliar nutrient levels and water balan-
ces among other factors across 41 European 
countries providing both large enough scale 
and a reliable, scientific resource of histori-
cal environmental data for the development 
of ECM range maps. In addition to this, the 
data from these sources could be used to cre-
ate powerful  SDMs to predict  the presence 
of ECM species in unsampled areas.

Conclusion
This  analysis  has  shown  that  the  data 

present in online genetic databases for some 
ectomycorrhizal  fungi  can  be  used  to  map 
fungi.  However, the validity of this method 
requires high resolution and accurate envir-
onmental  layers,  an  understanding  of  the 
variability of environmental factors at diffe-
rent spatial scales and an evenly distributed 
sampling  effort.  Low  data  quantity  means 

that these results cannot yet be used to make 
a reliable SDM.

There is  need  for  a  standardised  level  of 
data collection regarding ECM DNA and the 
variables of the environment  in which they 
are found. As the strength of spatial data and 
its extrapolated information is based funda-
mentally on a larger number of evenly distri-
buted  sample  locations,  the  use  of  online 
DNA databases provides a reliable means to 
increase data quality for the development of 
ECM SDMs.
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