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Development of monitoring methods for Hemlock Woolly Adelgid 
induced tree mortality within a Southern Appalachian landscape with 
inhibited access
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Hemlock woolly adelgid (Adelges tsugae Annand, HWA) is an introduced inva-
sive forest pest in eastern North America. Herbivory by this insect results in
mortality to eastern hemlock (Tsuga canadensis L. Carr.) and Carolina hemlock
(Tsuga caroliniana Engelm.). These species occur in landscapes where extre-
me topographic variation is common. The vegetation communities within these
landscapes feature high diversity of tree species, including several other coni-
fer species. Traditional forest inventory procedures and insect pest detection
methods within these limited-access landscapes are impractical. However, fur-
ther information is needed to evaluate the impacts of HWA-induced hemlock
mortality. Accordingly, our goal was to develop a semi-automatic method for
mapping patches of coniferous tree species that include the living hemlock
component and tree mortality by the HWA using aerial images and LiDAR (light
detection and ranging) to increase our understanding of the severity and pat-
tern of hemlock decline. The study was conducted in the Linville River Gorge
in the Southern Appalachians of western North Carolina, USA. The mapping
task included a two-phase approach: decision-tree and support vector machine
classifications. We found that about 2% of the forest canopy surface was cove-
red by dead trees and 43% by coniferous tree species. A large portion of the
forest canopy surface (over 55%) was covered by deciduous tree species. The
resulting maps provide a means for evaluating the impact of HWA herbivory,
since this insect was the only significant coniferous mortality agent present
within the study site.

Keywords:  Decision-tree  Classification,  Eastern  Hemlock,  Hemlock  Woolly
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Introduction
Eastern hemlock (Tsuga canadensis L. Carr

- Pinaceae) and Carolina hemlock (Tsuga ca-
roliniana Engelm. - Pinaceae) are shade to-
lerant tree species that have a long life cy-
cle  (Orwig  &  Foster  1998,  Ward  et  al.
2004). These species are well adapted to a
broad range of soils types and site condi-
tions (Quimby 1995). Eastern hemlock has
an extensive geographic range in eastern
North America and is  considered to  be a
foundation  (keystone)  species  that  provi-

des  a  variety  of  intermediate  and  final
ecosystem  services,  e.g.,  regulation  of
stream temperature, mitigation of soil ero-
sion (Webster et al. 2012), and habitat and
food resources for a suite of taxa, including
birds, mammals (Jordan & Sharp 1967,  La-
pin 1994, Quimby 1995), fish, invertebrates,
amphibians,  and  reptiles  (Lapin  1994).  In
contrast to eastern hemlock, Carolina hem-
lock has a more restricted geographic dis-
tribution in the Southern Appalachians and
is  often  found  on  nutrient  impoverished

soils at higher elevations.
Hemlock  woolly  adelgid  (Adelges  tsugae

Annand,  HWA)  is  an  invasive  forest  pest
that  feeds  on  hemlock  parenchyma  cells
(Young et al. 1995). The species was intro-
duced from Japan and first detected in the
eastern  USA  in  the  1950s  (Havill  et  al.
2006). Initially, the HWA was not conside-
red to be a forest pest in its new environ-
ment  (Ward  et  al.  2004).  Subsequently,
populations  of  this  insect  expanded  and
infested  eastern  and  Carolina  hemlock
throughout a broad expanse of  their  ran-
ges  (Clark  et  al.  2012).  Herbivory  by  the
HWA results in progressive weakening and
eventual  mortality  of  trees  (Stadler  et  al.
2006). Hemlocks of all age and size classes
are  vulnerable  (Nuckolls  et  al.  2009)  and
infested trees routinely  succumb to HWA
herbivory, within a span of 5-15 years (Stad-
ler et al. 2006).

The effects of HWA herbivory at the land-
scape-scale  (Coulson  &  Tchakerian  2010)
include  widespread  elimination  of  hem-
locks. Both species composition and stand
structure are fundamentally  altered (Ford
et al. 2012). One result is a landscape domi-
nated by broad-leaved tree species (Spaul-
ding & Rieske 2010, Birt et al. 2014). In addi-
tion to the landscape-scale effects, respon-
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ses include changes in transpiration (Daley
et al. 2007,  Ford & Vose 2007), carbon cy-
cling (Nuckolls et al. 2009, Cobb 2010), and
energy  and nutrient  fluxes  (Stadler  et  al.
2006).

Hemlocks commonly occur in topographi-
cally  complex terrain,  including steep slo-
pes, deep gorges, ravines, and riparian bor-
ders  (Narayanaraj  et  al.  2010).  Hemlocks
are not typically dispersed as large continu-
ous canopies, but rather occur in small pat-
ches, often mixed with deciduous or other
coniferous  tree  species  (Quimby  1995,
Koch et  al.  2005).  Furthermore,  Young &
Morton (2002) suggested that the patchy
nature  of  eastern  hemlock  decline  may
also originate from the influence of  land-
scape-level  environmental  factors.  Land-
scape patterns and topography can direct-
ly influence pest populations and dispersal,
or influence indirectly the health and distri-
bution of the host trees (Young & Morton
2002).  Traditional  ground-based tree-  and
plot-wise  inventory  procedures  and  field
surveys  for  insect-induced  foliage  altera-
tions and their extent are inadequate. New
methods  are  needed  for  revealing  land-
scape-scale  patterns  of  hemlock  decline
within areas that have difficult terrain and
sparse road-networks. Remote-sensing me-
thodologies provide an alternative means
of  assessment that  can be both  accurate
and cost-effective. This approach to assess-
ment provides land-cover maps at various
and  appropriate  spatial  and  temporal
scales  (Foody 2002,  Kavzoglu & Colkesen
2009) and,  aside from validation,  reduces
the  need  for  costly  and  time-consuming
ground survey (Means et al.  2000,  Moun-
trakis et al. 2011).

Aerial  images  are  widely  used  in  forest
mapping  and  monitoring,  since  this  med-
ium  is  commonly  available  and  relatively
inexpensive  (Kantola  et  al.  2010).  Color-

infrared images (CIR) with a near-infrared
(NIR) band are particularly well  suited for
tree  species  recognition,  compared  with
true color  images.  The NIR band is  espe-
cially  useful  for  distinguishing  conifers
from hardwood species (Holmgren & Pers-
son 2004). Low-resolution remote sensing
lacks power to reveal fine-scale community
structures  and  dispersion  patterns.  Fur-
thermore,  remote-sensing  applications
using LiDAR (Light Detection and Ranging)
provide another means for accurate map-
ping of  forest  vegetation in  three dimen-
sions. This approach has a variety of appli-
cations  in  vegetation  mapping  and  moni-
toring  in  forestry,  and  other  disciplines
(Holopainen et al. 2014).

Aerially  collected  images  have  been  wi-
dely  utilized  in  forest  health-monitoring
applications. High-resolution imageries ha-
ve been successfully applied in monitoring
damage  by  pest  insects,  including  moun-
tain pine beetle (Dendroctonus ponderosae
Hopkins – Coggins et al. 2008, Meddens et
al.  2011,  Wulder  et  al.  2012),  European
spruce  bark  beetle  (Ips  typographus L.  –
Lausch  et  al.  2013),  common  pine  sawfly
(Diprion pini L.  –  Kantola et al.  2010), and
Jack  pine  budworm  (Choristoneura  pinus
pinus Free. – Leckie et al. 2005). Accompa-
nying  advances  in  detection  technologies
has been the development of methods for
pattern  recognition  of  remotely  sensed
data (Mahesh & Mather 2003, Wulder et al.
2006).  These methodologies facilitate the
use of  large  volumes  of  remotely  sensed
data with high spatial and spectral resolu-
tions.

Despite the acknowledged ecological im-
portance of hemlock species and concern
over  the  decline  of  hemlock  in  Southern
Appalachian forests, spatially explicit infor-
mation on the landscape-scale  pattern of
hemlock  mortality  is  limited.  Hemlock  is

only  of  marginal  economic  value  in  com-
mercial forestry (Clark et al. 2012). The lack
of economic interest coupled with the diffi-
culties  in  field  inventory  and  monitoring
tasks may have hindered quantitative eva-
luation of the ecological impact of hemlock
removal in Southern Appalachian forested
landscapes.

Methods for  monitoring  HWA herbivory
on the landscape-scale are needed to esti-
mate these impacts. These landscapes are
often remote with limited access. Practical
approaches  include  mapping  procedures
that  can  be  conducted  with  no  or  little
ground reference. Spatial resolution of the
method should be high enough to enable
investigation  of  landscape  patterns  and
topographical relationships, as well as pos-
sible pathways for the HWA. The present
investigation  is  a  pilot  study  that  aims
towards a flexible monitoring system that
could also be applied in inaccessible areas.
Accordingly, the goal was to employ remo-
te  sensing  technologies  to  assess  HWA
impact  on hemlock  mortality  in  Southern
Appalachian forest landscapes. The specific
objectives include employment of  a semi-
automatic  method  for  mapping  HWA-in-
duced hemlock mortality as well as conifer
patches with a living hemlock component
within a Southern Appalachian landscape,
using high-resolution aerial images and low
pulse-density airborne-scanning LiDAR.

Material and methods

Study area
The  approximately  48-km2 wide  study

area is located in the Grandfather Ranger
District  (35°  56′ N,  81°  55′  W),  Pisgah Na-
tional Forest, in the Southern Appalachians
of western North Carolina (Fig. 1). The land-
scape vegetation consists primarily of ma-
ture, mixed-species forest stands that are
characteristic  of  the ecoregion.  The topo-
graphy is very rugged, with elevations ran-
ging from 1270 m a.s.l. on the ridgetops to
490 m (mean of 880 m) along the Linville
River, which flows through the study site.
The southwestern part of the area includes
an  urban  component.  Approximately  half
of the study site occurs within the Linville
Gorge  Wilderness,  which  has  been  only
modestly logged; less than 5%, according to
Newell  & Peet  (1998).  However,  the area
has been disturbed,  e.g., by chronic acidic
deposition  and  frequent  forest  fires  (Ne-
well & Peet 1998,  Wimberly & Reilly 2007,
Elliot et al. 2013). The most recent wildfire
occurred in the southwestern part of  the
study  area  in  October  2000  (Wimberly  &
Reilly 2007, Elliot et al. 2013). The three ma-
jor ecological zones that occur within the
study  site  include  the  Acidic  Cove,  Xeric
Pine-Oak Heath and Oak Heath, and Mesic
Oak-Hickory zones (Simon et al. 2005,  Birt
et al.  2014).  This  structurally diverse land-
scape and humid climate provides a variety
of  habitats  for  more  than  400  vascular
plants and a rich diversity of  tree species
(Schafale & Weakly 1990,  Peet et al. 1998,
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Fig. 1 - The study area. Location of the Grand Father Ranger District (green) and the
study  area  (red)  in  the  western  North  Carolina  (©ESRI  -  left)  and  an  aerial  image
mosaic of the study area (right).
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Simon et al. 2005). A sparse road-network
resulting from the complex terrain and pre-
served  wilderness  area  further  inhibits
access and data collection in the area. Both
eastern  and  Carolina  hemlock  are  abun-
dant within the area (Jetton et al.  2008).
The HWA was first detected in the area in
the early 2000s (Koch et al. 2006) and was
the  most  significant  tree  mortality  agent
during  the  time  period  of  the  study.
Patches of dead hemlocks can be observed
in  the  landscape.  Hemlock  decline  is  the
most abundant on the riverside and along
the drainages. We also found that the sup-
pressed  small  hemlocks  growing  on  the
Linville  River  hillsides  were  infested  and
heavily defoliated in May 2014 (Kantola &
Lyytikäinen-Saarenmaa,  field  observation,
May 9-11, 2014).

Remote sensing data sets

Aerial images
CIR  imagery  with  1-m  spatial  resolution

was  acquired  with  a  multiple  Intergraph
Digital  Mapping  Camera  system  (Inter-
graph Corp., Huntsville, AL, USA) at an alti-
tude of approximately 9000 m in the sum-
mer of 2012 (leaf-on) by the National Agri-
cultural  Inventory  Program  (NAIP).  The
images were captured simultaneously from
four 3072 × 2048 pixel multispectral came-
ras  with  30  mm  lenses  producing  red,
green,  blue, and NIR bands. The CIR ima-
gery used in the analysis was resized to 3 m
× 3 m pixel size to better correspond to the
size of an individual tree crown.

Color  aerial  imagery  (RGB)  with  15-cm
spatial  resolution  in  the  red,  green,  and
blue  bands was  acquired by  the Sanborn
Map Company Inc. (Colorado Springs, CO,
USA) with a large-format Zeiss (Carl  Zeiss
AG,  Oberkochen,  Germany)  /  Intergraph
DMC in the winter 2010 (leaf-off).  The fly-
ing  altitude  was  approximately  1500  m
above the mean terrain. The RGB imagery
was  used  as  a  reference  to  enhance  the
accuracy  of  the  training  and  testing  data
sets.

Airborne-scanning LiDAR
Airborne-scanning  LiDAR  was  acquired

during the North Carolina Floodplain Map-
ping Program phase II, in 2003. The LiDAR
point cloud was acquired with a Leica Geo-
Systems  Aeroscan  system  (Leica  Geosys-
tem AG, Heerbrugg, Switzerland). The fly-
ing altitude was 3000 m above the mean
terrain at a speed of 150 knots, with a field
of  view  of  55  degrees,  and  a  laser  pulse
rate of 23100 Hz. The density of the pulses
returned  within  the  area  was  less  than  1
per  m2.  A  LiDAR  point  cloud  of  approxi-
mately 40 km2 was downloaded from the
U.S.  Geodetic  Survey  (USGS)  Earth  Ex-
plorer  (USGS  2012).  The  area  covered  by
the LiDAR point cloud was used in the ana-
lysis.  A  canopy  height  model  (CHM)  was
derived  from  the  LiDAR  point  cloud  and
used in the first sub-task of the study.

Methods

General workflow
The  first  sub-task  was  to  exclude  non-

forested land from the study site, including
urban areas, water, and bare ground.  We
also  excluded  deep  black  shadows  that
lacked  spectral  information.  These  tasks
were  accomplished  by  creating  a  forest
mask,  using  CHM  and  Normalized  Diffe-
rence Vegetation Index (NDVI) layers. The
rationale for the forest mask creation was
to avoid overestimation of dead tree cove-
rage  due  to  similar  spectral  reflectance
associated with  some non-forested patch
types, such as bare ground and roads. Fur-
thermore,  reducing  the  number  of  cover
classes usually improves the overall classifi-
cation accuracy. The second sub-task inclu-
ded the classification of the remaining fo-
rest canopy cover. We assessed the accu-
racy by calculating the classification accura-
cies and Cohen’s kappa-values (κ –  Cohen
1960)  for  both  sub-tasks  separately.  The
implementation  was  done  by  employing
the FUSION® software (FUSION/LDV, USDA
Forest Service, Seattle, WA, USA – McGau-
ghey  2009),  Environment  for  Visualizing
Images (Exelis Visual Information Solutions
- ENVI®) software (EXELISVIS Inc., Boulder,
CO,  USA),  and  the  ArcGIS® Geographic
Information System environment (Environ-
mental  Systems Research Institute -  ESRI,
Redlands,  CA,  USA).  The  study  workflow
was  divided  into  four  main  steps  as  fol-
lows:
1. creation of training and testing data sets

via  visual  interpretation (section “Train-
ing and testing data sets”);

2. creation of LiDAR-derived CHM and NDVI
layers (section “Forest mask creation”);

3. forest  mask  creation  with  decision-tree
classification  and  extraction  of  non-
forested  areas  from  the  aerial  imagery
(section “Forest mask creation”); and

4. conducting  Support  Vector  Machine
(SVM) classification for the forest cover
classes (section “Forest cover classifica-
tion”).

Training and testing data sets
We created testing and training data sets

by visual  interpretation of  the aerial  ima-
ges.  The  original  images  (CIR  and  RGB)
were used in the visual interpretation. The
corresponding pixels from the resized ima-
ge mosaic were chosen for the training and
testing data sets. A 200 × 200-m systematic
point network was created to test the ac-

curacy of the forest mask created in sub-
task 1. A total of 1080 pixels were assigned
to the forest and non-forest classes, yield-
ing  792  forest  and  288  non-forest  pixels.
We created  separate  training  and testing
data sets for the second sub-task to clas-
sify  and evaluate the forest cover  classes
(conifers,  hardwood  species,  and  dead
trees). A sample of pixels was chosen that
could  be  classified  by  an  expert,  without
high uncertainty,  into  conifers,  hardwood
species, and dead trees. A total of 7925 pi-
xels (5701 for training and 2224 for testing)
were assigned to these data sets. A total of
81 041 m2 of the study area were used for
training and testing (9720 m2 for the forest
mask, 71 321 m2 for the forest cover classifi-
cation – Tab. 1). The testing data set cove-
red  approximately  40%  of  the  reference
data set.

Forest mask creation
Separation of above-ground surface fea-

tures offers useful data for a wide range of
environmental applications. The digital sur-
face  model  is  a  three-dimensional  repre-
sentation of the ground surface in non-ve-
getated  terrain,  as  well  as  aboveground
features, such as vegetation and buildings.
In forestry applications, they are usually re-
ferred to as CHMs. The CHM was created
from the LiDAR point  cloud  via the follo-
wing  steps.  The  elevation  of  the  highest
return within each grid cell was assigned as
the local maximum to the grid cell center.
The ground elevation was estimated, using
a ground filter algorithm described in detail
by  Kraus  &  Pfeifer  (1998).  Laser  heights
above ground (normalized heights,  or ca-
nopy heights) were then calculated by sub-
tracting  the  ground  elevations  from  the
corresponding local  maxima.  The CHM la-
yer created with a spatial resolution of 3 ×
3-m  was  smoothened  with  a  3  ×  3  pixel
median filter.

The  NDVI  is  widely  used  in  ecological
applications  (Pettorelli  et  al.  2005).  The
principle  behind  it  is  that  chlorophyll
absorbs visible light in the read region of
the  electromagnetic  spectrum,  whereas
radiation  in  the  nonvisible  NIR  region  of
the spectrum is scattered by the leaf struc-
ture of  a plant  (Myneni  et  al.  1995).  As a
result,  vigorously growing healthy vegeta-
tion has low red-light reflectance and high
NIR reflectance and, hence, high NDVI va-
lues.

Decision-tree classification is a non-para-
metric procedure and represents a practi-
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Tab. 1 - Areas and number of pixels in training and testing data sets for three different
forest cover classes.

Cover Class
m²/data set Pixels/data set

Training Testing Training Testing

Conifer 15498 9333 1722 1037
Hardwood 32592 10017 3621 1113
Dead 3216 666 357 74
Total 51305 20016 5701 2224
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cal  method  for  land  cover  classification
(Tooke et al. 2009). A decision tree can be
defined as  a  classification procedure that
repetitively partitions a data set into smal-
ler subdivisions (Friedl & Brodley 1997). The
partition is made, based on tests defined at
each node of  the  decision tree.  Decision-
tree classification has advantages over tra-
ditional supervised classification methods,
such as maximum likelihood or neural net-
works,  which  are  widely  used  in  remote
sensing  applications  (Mahesh  &  Mather
2003,  Tooke  et  al.  2009).  There  are  no
required  assumptions  about  the  distribu-
tions and variations in data. The procedure
accommodates missing values and the use
of both numerical and categorical input va-
lues (Friedl & Brodley 1997, Mahesh & Ma-
ther 2003). The method is flexible and can
also process non-linear relationships (Mah-
esh & Mather 2003).

We used the CHM and the NDVI layers in
the  decision  tree  classification for  deline-
ation of  the forested areas.  CHM heights
greater than 1.2 m were considered vegeta-
tion,  buildings,  and  other  objects  above
the ground. A typical threshold height for
vegetation returns in forestry application is
2 m (Kantola et al. 2010). We kept the thre-
shold  value  for  the  canopy  height  even

lower, because the LiDAR point cloud was
somewhat  dated.  With  a  1.2-m threshold,
grasslands  and  other  short  vegetation
could  still  be  excluded.  This  concession
was reasonable,  because we were simply
separating terrain and vegetation and not
estimating tree or stand characteristics. A
low threshold value of  0.05 for the NDVI
was chosen.  We excluded deep shadows,
water, and other non-vegetation elements
having low NDVI values as well. The NDVI
threshold chosen, however, did not exclu-
de the dead trees. The resulting classifica-
tion layer was filtered with a neighborhood
majority filter to smooth the forest mask.
The area within the forest mask was fur-
ther used in the second sub-task.

Forest cover classification
The goal of the forest cover classification

was to  detect  patches  of  dead hemlocks
and  distinguish  living  conifers  from  hard-
wood species. The procedure permits map-
ping of clusters of dead trees and potential
areas  of  living  hemlocks.  The spectral  re-
flectance  of  deciduous  tree  species  is
known to differ from that of conifers. The
SVM  classification  methods  presented  by
Boser et al.  (1992) and  Vapnik (1995), are
not  as  well-known  as  many  other  proce-

dures  (Mountrakis  et  al.  2011).  However,
their  performance  can  exceed  that  of
other  classification  methods  (Gualtieri  &
Cromp 1999, Mountrakis et al. 2011). SVM is
a supervised non-parametric learning tech-
nique (Cortes & Vapnik 1995). SVM aims to
determine the location of optimal decision
boundaries  separating  different  classes
(Vapnik 1995). The nearest data points to
the resulting hyperplane that are used to
measure the margin are called support vec-
tors (Pal & Mather 2005). SVM approaches
using kernel functions can map non-linear
data  into  a  higher  dimensional  space.  In
that  space,  a  linear  separating  surface
between two classes is searched (Gualtieri
& Cromp 1999). SVM classifiers are suitable
for remote sensing applications, especially
with limited training data sets (Mantero et
al. 2005, Mountrakis et al. 2011). SVM classi-
fiers are also seen as being robust to noise
in data sets and to high-dimensional data.
SVM  minimizes  classification  errors  with-
out any prior assumptions about the pro-
bability distributions of a data set.

SVM  classifiers  have  been  successfully
used in remote sensing applications, inclu-
ding  vegetation  classification  (Gualtieri  &
Cromp  1999,  Lardeux  et  al.  2009),  forest
classification (Huang et al. 2008), and tree
species  classification  (Heikkinen  et  al.
2010). The radial basis function (RBF) and
polynomial kernels are the most commonly
used in remote sensing-based SVM classifi-
cations (Kavzoglu & Colkesen 2009).  Kav-
zoglu  &  Colkesen  (2009) gained  better
overall  classification accuracy with RBF in
land cover classification. We used the spec-
tral bands of red, green, NIR, and NDVI lay-
ers, and the RBF kernel in the SVM classifi -
cation.

Results

Forest mask
We  extracted  the  non-forested  areas

from the CIR image for the second phase
of  the  analysis  (Fig.  2).  The  area  of  the
LiDAR point cloud was smaller than the CIR
mosaic causing the black frame. The overall
classification accuracy was 93.5% (κ = 0.84).

Forest cover classification
The forested area, a total of 30.2 km2, was

classified  into  three  forest  cover  classes:
dead  trees,  conifers,  and  hardwood.  The
overall classification accuracy was 98.1% (κ
=  0.96).  Hardwood  species  covered  over
55%  of  the  classified  area,  while  conifers
and dead trees covered 44.7% of the classi-
fied  area  (42.6%  and  2.1%,  respectively)
(Tab. 2). Over 0.6 km2 of the area was clas-
sified  as  dead  trees  and  12.9  km2 as  co-
nifers.  The proportions found throughout
the study area, including unclassified areas,
were  1.63%  dead  trees,  42.5%  hardwood
species,  32.8%  conifers,  and  23.1%  non-fo-
rested/non-classified (Fig. 3).

The  classification  image  combined  with
the  digital  terrain  model  (DTM)  revealed
that  conifers  are  most  abundant  in  drai-
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Tab. 2 - (A) Classification accuracies within the study area: an error confusion matrix
of the SVM classification results. (B) The area covered by different forest cover clas-
ses and the proportions of the forested area.

Cover 
class

(A) Testing data (Percent) (B) Classification

Dead Conifer Hardwood Total Km2 Percent

Dead 98.65 1.93 0.00 4.20 0.64 2.12
Conifer 1.35 96.71 0.63 45.53 12.85 42.58
Hardwood 0.00 1.35 99.37 50.27 16.69 55.29
Total 100.00 100.00 100.00 100.00 30.18 100.00
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Fig. 2 - The used high resolution image tiles. The original color-infrared (CIR) image
mosaic of the study area (left), and the classified image for the second phase (right).
On the classified image, only the forested areas are visible and the non-forested areas
are extracted. Black color indicates the extracted areas.
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nages and on northern and western slopes
(Fig.  4).  Clusters  of  dead  trees  could  be
found, especially near the Linville River, in
drainages and at higher elevations.

Discussion

Evaluating hemlock mortality
Previous  studies  directed  at  evaluating

the impacts of hemlock decline have been
based  mainly  on  plot-wise  field  assess-
ments and the use of lower-resolution re-
mote  sensing  approaches.  Plot-wise  sam-
pling schemes have been used for studying
both  small-scale  within-stand  effects  of
hemlock  mortality  (Orwig  &  Foster  1998,
Elliott & Vose 2011,  Krapfl  et al.  2011)  and
broad-scale  regional  and  state-wide  im-
pacts  (Trotter  et  al.  2013).  Estimates  for

rates of hemlock mortality varied conside-
rably. Results of plot-  and stand-wise stu-
dies revealed hemlock mortality rates bet-
ween 0% and 95%, depending on the infes-
tation histories and latitudes (Orwig & Fos-
ter  1998,  Elliott  & Vose 2011,  Krapfl  et  al.
2011).

Landsat Thematic Mapper (TM) has been
the most commonly used remote sensing
sensor  in  the  mapping  of  hemlocks  and
HWA-induced hemlock mortality (Bonneau
et al. 1999, Royle & Lathrop 2002, Wimber-
ly  & Reilly 2007,  Kong et al.  2008). These
studies  provided  good  insights  into  HWA
herbivory and hemlock decline at different
spatial  scales. On the other hand, wall-to-
wall  studies  at  landscape  level  with  high
spatial resolution are scarce.  Kantola et al.
(2014) studied spatial  pattern of  hemlock

decline in the Southern Appalachians (NC,
USA). They visually assessed tree mortality
in the upper canopy cover layer within the
Lower Linville Watershed. They suggested
that  despite  the  modest  loss  in  total
biomass,  corresponding  to  0.1%  of  the
canopy surface, the impacts were substan-
tial to the area due to the patchy nature of
the hemlock decline, as well as the elimina-
tion of a foundation species. However, on
the landscape scale, the magnitude of  im-
pacts is still  mainly unknown and the lack
of information is even more pronounced in
inaccessible areas.

Hemlocks  are  distributed  throughout
forested  landscapes  and  grow  in  mixed-
species stands. These landscapes generally
comprise  several  tree  species,  including
other conifers. High-resolution remote sen-
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Fig. 4 - The classification
result combined with a di-
gital terrain model at the
Linville River Gorge. The
classification image pro-

nounces areas under inte-
rest, conifers and dead

trees (green and red,
respectively). Pixels classi-
fied as non-forest or hard-

wood species show as
grey.

Fig. 3 - The resulting classi-
fication image. The SVM

classification image (left):
1=dead trees; 2=hardwood
species; 3=conifers; and 4=

unclassified. A magnified
portion of the classification

image (a black square) is
illustrated on the left side

of the figure. The classifica-
tion image is on top and

the CIR image below
(right). Conifers show as

darker purple color in the
CIR image, hardwood

species show as pink or
red, and dead trees show

as pale green.
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sing enables  a  more  detailed  mapping of
broad  spatial  extent.  The  high-resolution
imagery used in our study enable a more
detailed projection of the area and pattern
of the hemlock decline suitable for estima-
ting the magnitude of ecological and social
impacts on the landscape-scale (Coulson &
Tchakerian 2010).

Two-phase forest cover classification
The first phase of the classification com-

prised the creation of a forest mask. This
sub-task was mandatory for distinguishing
dead  trees  from  bare  ground  and  some
urban infrastructure,  such as roads.  With-
out  this  phase,  our  assessment  for  dead
trees would have been overestimated. We
observed that the mask followed the bor-
ders  of  forest  and  non-forested  in  most
parts. An overall classification accuracy of
93.5% (κ = 0.83)  was  obtained for  forest/
non-forest  classification.  Minor  inaccura-
cies could be found,  e.g., on the edges of
bare  ground  ridges.  This  error  may  have
been partly due to filtering of the mask and
loss of small-scale information.

Projection  transformations  and  photo-
grammetry can also affect spatial accuracy
and thereby result in imprecise overlapping
of the remote sensing data sets. The LiDAR
point cloud used in the study was acquired
in  2003,  nine years  earlier  than the aerial
image mosaic. A destructive forest fire oc-
curred in the study area in 2000 (Elliot et al.
2013),  which  certainly  affected  the  forest
stand  dynamics.  There  is  no  information
available on logging outside of the Linville
Wilderness  area.  The  threshold  value  for
the  height  was  purposefully  kept  low  to
minimize the impact of changes in the ve-
getation  between  2003  and  2012.  More
recent  LiDAR  data  could  have  improved
the accuracy of the method. With simulta-
neously acquired high-pulse density LiDAR
and aerial  imagery,  it  may be  possible  to
delineate and classify individual trees (Kan-
tola et al. 2010).

The results of our forest cover classifica-
tion indicated that dead trees occurred in
an area of approximately 0.64 km2 (about
2% of the study area). We found that 12.9
km2 of the area were covered by conifers.
The last high mortality-causing disturbance
occurred in the early 2000s. The area was
infested  with  the  southern  pine  beetle
(Dendroctonus frontalis Zimm.,  SPB -  Kne-
bel & Wentworth 2007). Inspection of a ti-
me-series of high resolution aerial images,
acquired from the Linville Gorge revealed
that a large portion of the dead trees in the
forest  canopy  surface  became  invisible
within a span of  five or more years after
dying  (Kantola  et  al.,  unpublished  data).
We assume that the majority of the dead
trees  were  hemlocks,  because  the  HWA
has been the only high mortality agent du-
ring  recent  years,  Therefore,  we  suggest
that HWA herbivory has been the cause of
death to nearly 5% of the overstory conife-
rous component of the vegetation commu-
nity present at the time of data acquisition.

Other plausible tree mortality agents with-
in  the  area  include  minor  infestations  of
other species and abiotic factors, including
hardwood  species.  Kantola  et  al.  (2014)
found  that  dead  trees  covered  an  area
approximately  of  0.72  km2 (0.1%)  of  the
forested  area  within  the  Lower  Linville
Watershed. The central parts of the area in
our study belong to the same watershed.

Use of passive remote sensing, i.e., aerial
images  enables  only  investigation  of  the
overstory  HWA mortality.  Orwig & Foster
(1998) and Krapfl et al. (2011) suggest that
the mortality may be greater among under-
story hemlocks than in the upper canopy
layers. However, the information provided
by aerial images can produce good estima-
tes of the extent and pattern of hemlock
decline that include most of the biomass.

We obtained an overall accuracy of 98.1%
(κ = 0.96) for the three forest cover clas-
ses. These values are probably an overesti-
mation  resulting  from  the  visual  assess-
ment of aerial images. In cases where the-
re  was  uncertainty,  pixels  were  excluded
from  the  evaluation  data  set.  Shadows
were excluded from the forest cover classi-
fication.  Topographic  correction  methods
for high-resolution images in order to redu-
ce  the  effect  of  shadows  can  be  proble-
matic. With planning, the image acquisition
can be  done on date and at  time of  day
when  the  shadows  are  less  pronounced.
Another  option is  to  acquire  two sets  of
images captured at different times of day
for the assessment. Most of the shadowed
areas were assumed to be covered by fo-
rest.  Excluding the areas  may have intro-
duced bias into the results.  However, our
classification  approach  provided  reasona-
ble accuracy for mapping fine-scale HWA-
induced  tree  mortality.  Thomlinson  et  al.
(1999) set the criteria for successful land-
cover  classifications  stating  that  overall
classification  accuracy  should  exceed  85%
with at least 70% per-class accuracy.

A  large  component  of  the  coniferous
community within  the study area was  as-
sumed to be hemlock. Several sources sup-
port this assumption. Using the North Ca-
rolina Vegetation Survey (NCVS) protocol,
Newell  &  Peet  (1998) sampled  181  plots
within  the  Linville  River  Watershed.  East-
ern and Carolina hemlocks were abundant
in the vegetation classes covering most of
the  northern  part  of  the  Linville  Gorge
Wilderness,  which  included  much  of  the
study area (Newell & Peet 1998). Knebel &
Wentworth (2007) reported that a combi-
nation of frequent forest fires and previous
SPB infestations diminished the pine (Pinus
spp.)  component  of  the  vegetation  com-
munity. In addition to eastern and Carolina
hemlocks,  possible  coniferous  species  wi-
thin the study area include eastern white
pine  (P.  strobus L.),  pitch  pine  (P.  rigida
P.Mill.),  table  mountain  pine  (P.  pungens
Lamb.), and Virginia pine (P. virginiana Mill.
- Newell & Peet 1998, Elliot et al. 2013).

Since hemlocks  and other conifers  have
similar  reflectance  values,  distinguishing

among the species is difficult and prone to
errors (Royle & Lathrop 1997,  Orwig et al.
2002, Koch et al. 2005). One option for ad-
dressing this issue is to sample accessible
parts of target areas that are classified as
conifers  and  collect  tree-wise  field  data
with  accurate  locations.  Reference  data
may be collected from another, and acces-
sible,  landscape  with  similar  tree  species
composition, with consideration. A spectral
library  for  the  coniferous  species  present
could be built using similar remote sensing
data.  These spectral reflectance signature
may help to distinguish the hemlock com-
ponent from other conifers. Use of existing
auxiliary information under conditions typi-
cal of hemlock sites could be another ap-
proach to separate hemlocks and other co-
nifers. Environmental layers, such as topo-
graphy, soil, temperature, and site-type lay-
ers  can  be  utilized.  A  vast  array  of  algo-
rithms could be employed in modeling of
the most probable areas for hemlock spe-
cies within the conifer patches.

An early symptom of HWA infestation is
gradual  defoliation (Orwig & Foster 1998,
Elliott & Vose 2011). Defoliation can be esti-
mated to some degree from aerial images
or LiDAR point clouds (Pontius et al. 2005,
Kantola et al. 2013,  Vastaranta et al. 2013).
For  example,  Elliott  &  Vose  (2011) disco-
vered that after less than three years of an
HWA  infestation,  the  mean  defoliation
level  was  over  80% in  the  sampling plots
with 100% hemlock infestation rate. In the
present  study,  defoliated  hemlocks  were
included in the forest cover class of coni-
fers.  A  portion  of  the  heavily  defoliated
trees  may  have  been  classified  as  dead
trees.

Remote sensing in hemlock mapping 
and HWA monitoring

Although high-resolution imageries have
not been utilized in mapping hemlocks and
HWA-induced  tree  decline,  there  are  stu-
dies that have used various remote sensing
approaches.  Koch  et  al.  (2005) studied
hemlock  mapping  via ASTER  (Advanced
Spaceborne Thermal  Emission and Reflec-
tion  Radiometer)  satellite  images  in  the
Great Smoky Mountains of North Carolina.
Auxiliary raster layers were used to enhan-
ce the classification. Their overall classifica-
tion accuracy was 85.3% (κ=0.77) and the
accuracy of  hemlock stand detection was
69%.  In  the  western  part  of  their  study
area,  hemlocks  were  limited  to  narrow
riparian corridors. In the eastern part, hem-
locks were more broadly distributed. These
authors assumed that restricting hemlocks
to  riparian  corridors  in  the  training  data
caused misclassification in the other areas.

Royle & Lathrop (2002) investigated the
use of multi-temporal Landsat TM derived
vegetation indexes in mapping the health
of  hemlock  forest  stands  in  Connecticut.
The best overall classification accuracy for
four  hemlock  forest  health  classes  was
82%. Wimberly & Reilly (2007) used Landsat
TM images to assess fire severity and spe-

183 iForest 9: 178-186

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry



Mapping hemlock woolly adelgid induced tree mortality

cies  diversity  in  the  Linville  River  Gorge.
Eastern  hemlock  was  associated  with
moist areas along ravines and at the bot-
tom of the gorge.  Kong et al. (2008) used
Landsat TM and ASTER images combined
with  environmental  variables  to  detect
hemlock  stands  in  a  study  conducted  in
Kentucky. From the evergreen pixels, they
correctly  detected  72%  of  the  hemlock
points. Pontius et al. (2005) detected hem-
lock-dominated pixels  from AVIRIS hyper-
spectral  images  (Airborne  Visible/Infrared
Imaging Spectrometer) with 83% accuracy
in New York.

Impacts of HWA on the landscapes
Our  classification  image  indicated  that

conifers and dead trees were abundant in
the proximity of the Linville River, on steep
hillsides,  and  at  high  elevations.  Most  of
the dead trees were located in the north-
ern and northwestern aspects.  Kantola et
al. (2014) obtained similar results, showing
that within the Lower Linville Watershed,
the density of the dead trees was higher in
proximity  to  the  Linville  River,  at  higher
elevations, and in the northern and north-
western aspects. They also found that the
spatial pattern of the dead trees was typi-
cally  clustered.  They  obtained the  results
with  more  time-consuming  visual  assess-
ment  of  aerial  images.  The  classification
image  showed  that  conifers  were  most
abundant on northern and western slopes
and  drainage.  This  observation  is  in  line
with the results from other reports.  Nara-
yanaraj  et  al.  (2010) examined  the  topo-
graphical pattern of living eastern hemlock
in  the  Coweeta  Basin  of  North  Carolina.
Their  results  showed  that  living  eastern
hemlocks  were  more  abundant  close  to
streams  and  on  flat  or  gentle  slopes,  at
lower elevations. They found that eastern
hemlock  was  absent  above  1250  m.  In  a
study  conducted  in  central  Connecticut,
Orwig et  al.  (2002) observed that  a large
number  of  hemlock  stands  were  located
on ridge tops,  steep hillsides,  and in  nar-
row  valleys.  Hemlock  mortality  occurred
mostly on the westward-facing slopes. Se-
veral studies suggested that microclimate
and soil  conditions related to variation in
topography are important factors in HWA
damage  (Hodkinson  2005 Narayanaraj  et
al. 2010).

Trotter et al. (2013) used the USDA Forest
Service Forest Inventory and Analysis (FIA)
database  to  address  changes  in  hemlock
abundance in the eastern USA. They obser-
ved an increase in the basal area of living
and dead hemlocks during a 20-year study
period at county-  and state-levels.  Trotter
et  al.  (2013) suggested  that  impacts  of
HWA are not evident at the regional level.
Our  results  indicate  that  the  reduction in
total plant biomass within the landscape is
modest.  Hemlocks,  serving  as  foundation
species,  play  multiple  functional  roles  in
forested landscapes, such as modifying en-
vironmental  conditions  and  providing  fo-
rage and habitat resources for a variety of

taxa. Therefore, the impacts of the decline
are profound. The clustered pattern of the
dead trees, especially in the riparian areas,
can  intensify  the  impacts  on  forest  land-
scapes and ecosystems.

The  developed  two-phase  classification
strategies used in this investigation can be
adapted for monitoring other invasive pest
insects  that  cause  heavy  defoliation  and
tree  mortality,  e.g.,  the  gypsy  moth  (Ly-
mantria  dispar L.),  SPB,  and  emerald  ash
borer  (Agrilus  planipennis Fairmaire).  The
methodology can also be used with  auxi-
liary  information to produce training sets
for large area inventories with lower-reso-
lution remote sensing data sets.

Conclusions
The  HWA  is  a  major  mortality  agent  of

eastern and Carolina hemlocks throughout
their distribution in the eastern USA. Accu-
rate spatially explicit information on hem-
lock distribution and HWA-induced morta-
lity is not available at the landscape-level.
Therefore, it is not possible to evaluate the
impact  of  this  insect  on  the  vegetation
community in which hemlocks are a promi-
nent component. The straightforward two-
phase  methodology  described  herein,
which  utilizes  aerial  images  and  LiDAR
point  clouds,  can  result  in  distribution
maps of considerable accuracy. This proce-
dure is suitable for mapping the coniferous
patches that include the hemlock compo-
nent of the vegetation community and for
distinguishing tree mortality resulting from
the HWA or other disturbance agents.
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