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Multifactor empirical mapping of the protective function of forests 
against landslide occurrence: statistical approaches and a case study
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Forests  are  increasingly  valued for  services  beyond timber and  non-timber
products including land protection with respect to events such as landslides,
soil erosion, floods and avalanches. The most important properties of a protec-
tive forest are its ecological and mechanical stability. Planning and implemen-
ting  multifunctional  forest  management  in  protective  forests  is  challenging
because of the trade-offs and synergies among the many functions of the fo-
rest. In this study, a multifactor empirical method is presented for assessing
the protective role of forests on a stand scale with respect to landslide occur-
rence. Multifactor methodologies typically estimate landslide susceptibility ex-
ploiting the relationship between past landslide patterns and site characteris-
tics. Two statistical approaches were here applied to assess the probability of
landslide occurrence: the weight-of-evidence technique and the logistic re-
gression technique. Statistical analysis was performed on the basis of landslide
detachment zone only. The question of how to estimate protective forest func-
tion was answered through the comparison of models established with diffe-
rent sets of predicting factors. This study ultimately aims to provide a deci-
sion-support tool focused on mapping the potential role of forests in landslide-
prone areas. A case study from the Italian Alps was considered. The density of
landslide detachment outside forest areas proves to be more than twice than
that within forest areas.

Keywords:  Forest  Protective  Function,  Landslide  Susceptibility,  Logistic  Re-
gression, Weight of Evidence, GIS, Alps

Introduction
Forests  provide  timber  and  non-timber

products  and  a  wide  range  of  services.
Most forests are multifunctional, to a cer-
tain extent, simultaneously fulfilling ecolo-
gical, economic and social functions. How-
ever, a clear functional specialization of fo-
rests  also  exists  and  can  thus  determine
focused management strategies. This is the
case of protection forests.

The  protective  role  of  forests  is  due  to
the ability of stands to control and reduce

the occurrence and impact  of  natural  ha-
zards such as landslides,  soil  erosion,  sur-
face  runoff,  debris  flow  and  avalanches
(Brang et al. 2001,  Forbes et al.  2013). Fo-
rest protection may be classified according
to indirect or direct effects (Motta & Hau-
demand  2000).  Direct  protection  implies
that  the  forest  directly  defends  people,
their goods and infrastructures against the
impact of natural hazards. Indirect protec-
tion is related to other natural resources,
such as protection of  soil  against erosion

or protection of the quantity and quality of
water  resources.  Forests  offering  direct
protection also provide indirect protection,
whereas  the  opposite  is  not  always  true.
Berger  &  Rey  (2004) introduce  also  the
terms “active protection” (which is possi-
ble  in  the  departure  zone of  avalanches,
floods  or  erosion)  and  “passive  protec-
tion” in the transition and stopping zones.
Protection  forests  require  management
decision other than, for example, those of
productive  forests  aiming  at  preserving
and enhancing the protective effectiveness
of  the  stands  (Brang  2001,  Dorren  et  al.
2004). However, in many cases, protective
stands  are  also  harvested  for  wood  pro-
duction  and  must  be  managed  weighing
the  relative  importance  of  each  function
(Cimini  et  al.  2013).  Thus  assessing  and
mapping the degree of protection against
a certain hazard guaranteed by a forest are
key tools for planning silvicultural options
at stand level. This paper had this goal re-
ferring to protection against landslides. We
did not distinguish between direct and indi-
rect  protection,  the  scope  of  the  work
being to evaluate the protective potential
of  each  stands  apart  from  the  object  to
protect.

The relationships between vegetation co-
ver  and mass  movement are  diverse  and
multifaceted,  as  discussed  by  Sidle  et  al.
(1985),  Sidle & Ochiai (2006) and  Marston
(2010). Forest cover enhances slope stabili-
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ty through its effect on both hydrology and
soil strength. Through interception, evapo-
transpiration and enhancing soil permeabi-
lity,  forests improve the hydrological  cha-
racteristics  of  the  soil.  Tree  root  systems
enhance the shearing strength of the soil,
enabling it to resist landslides and erosion.
Among the preparatory causes, slope failu-
res may take place under modification of
forest  stand  conditions  by  human  activi-
ties, such as road building and wood har-
vesting  (Sidle  &  Ochiai  2006).  Landslides
which  occur  some  years  after  deforesta-
tion are often attributed to decay and loss
of strength in root networks of  a former
forest  cover  (Glade  2003,  Ammann  et  al.
2009).

A landslide can be defined as the move-
ment of rock, earth or debris down a slope
under  the  force of  gravity  (Cruden 1991).
Despite this simple definition, a landslide is
a  complex  phenomenon characterized by
five fundamental mechanisms (fall, topple,
slide, lateral spread, flow) and their combi-
nations  (Cruden  &  Varnes  1996).  Varnes
(1984) defines landslide hazard as the pro-
bability  of  a  landslide  occurring  within  a
specified period and given area. This defini-
tion includes two features: geographical lo-
cation (spatial  probability)  and the occur-
rence of the events (temporal probability).
Spatial probability, as represented by land-
slide  susceptibility,  is  the  likelihood  of  a
landslide occurrence in a given location (or
land unit) conditioned to its characteristics
(Chung  &  Fabbri  1999,  Gorsevski  et  al.
2006).  Landslide  susceptibility  maps  are
very  useful  for  planners  for  selecting sui-
table locations for developmental activities
in mountain regions (Sarkar et al. 2008).

A variety of approaches, including heuris-
tic, statistical and deterministic ones, were
developed to assess landslide susceptibili-
ty.  The heuristic  approaches take into ac-
count the relation between the location of
previous landslide events and geo-morpho-
logical and geo-lithological settings (Anba-
lagan & Sing 1996, Ayalew et al. 2004, Wati
et al. 2010, Bijukchhen et al. 2012). This ap-
proach strongly depends on the expert ex-
perience: each geo-morphological and geo-
lithological factor is weighted according to
its assumed or expected influence in caus-
ing mass movements. A final map is obtai-
ned by overlaying the thematic layers rela-
tive to each factor.

The  deterministic  approach  is  based  on
the  hydrogeo-technical  models  of  slope
stability. A variety of frameworks are avai-
lable in literature referring to different phy-
sical  models.  For  instance,  many  authors
have used the infinite slope stability para-
digm (Moon & Blackstock 2004,  Safaei  et
al.  2011),  hydrological  models  with  slope
stability component (Montgomery & Diet-
rich 1994, Lanni et al. 2012), more complex
dynamic landscape evolution models (Cla-
essens et al. 2007), and shallow subsurface
flow and landsliding models  (Tarolli  et  al.
2011) to assess landslide susceptibility. The
primary  drawback of  deterministic  appro-

ach is that it requires detailed information
on many environmental conditions within a
landscape at a high spatial resolution.

Statistical approaches to assess landslide
susceptibility involve the determination of
the combinations of variables that have led
to landslides in the past. Thorough reviews
of the approach are given by Guzzetti et al.
(1999) and Brenning (2005). Both bivariate
and  multivariate  statistical  approaches
were  exploited.  Bivariate  analysis  compa-
res each predisposing factor with a landsli-
de inventory map, ignoring any significant
intercorrelation among the factors. Under
bivariate  statistical  analysis,  each  causal
factor layer is combined with the landslide
distribution map and weighting values are
calculated  according  to  landslide  densi-
ties. One of the common methods applied
is the weight-of-evidence model (Lee et al.
2004a,  Rezaei  Moghaddam  et  al.  2007,
Regmi et al. 2010, Pradhan et al. 2010).

Multivariate analysis builds statistical mo-
dels by simultaneously considering the in-
fluences of all factors within a defined land
unit  on  landslide  susceptibility.  For  this
analysis, several authors have successfully
used logistic regression modeling (Ayalew
& Yamagishi 2005, Yesilnacar & Topal 2005,
Lee & Sambath 2006,  Chen & Wang 2007,
Domínguez-Cuesta et al. 2007,  Nefeslioglu
et al. 2008, Ramani et al. 2011).

This paper compares the results of bivari-
ate and multivariate statistical approaches
in order to introduce a framework for esti-
mating the degree of protection offered by
forest at the stand level as a decision-sup-
port tool for forest management and plan-
ning  with  a  protective  role  against  land-
slide. Assuming that the forest cover gene-
rally enhances slope stability,  we propose
an approach to asses forest protection by
considering  landslide  susceptibility  scena-
rios derived from various landslide predic-
tive factors dataset.

The  methodological  approach,  which  is
illustrated with references to a case study
in the Italian Alps, has the following goals:
(i)  to  evaluate  the  influence  of  different
factors  on  the  model  prediction;  (ii)  to
quantify,  in relative terms,  the protection
against  landslide  occurrence  provided  by
forests; (iii) to determine the spatial extent
of  forest  that  have  a  preeminent  protec-
tive function.

Material and methods
Models established for distinct functional

units  of  landslides  involve  different  pat-
terns  for  landslide  susceptibility  assess-
ment (Vorpahl et al. 2012).  Magliuolo et al.
(2008) demonstrated that consideration of
landslide  detachment  zones  rather  than
landslide body (the transport zone and the
deposition  zone)  for  statistical  analysis
conveys  more  meaningful  results.  There-
fore, only the area of landslide detachment
zone was considered for the statistical ana-
lysis in the present study.

The  bivariate  (weight-of-evidence)  and
multivariate  (logistic  regression)  approa-

ches  were exploited to examine the rela-
tionship between landslide occurrence and
geo-environmental  factors,  whose  maps
are typically  available for large areas.  For
each statistical approach, two models were
established, with the second one including
forest cover as a predicting factor. The pre-
dictive  potentials  of  the  established  mo-
dels  were  evaluated  using  the  Receiver
Operating Characteristics (ROC) curve (Be-
guería 2006, Frattini et al. 2010, Sterlacchini
et al. 2011).

After  identifying  the  best  statistical  ap-
proaches,  the  landslides  susceptibility
maps  produced  by  either  models  that
exclude (model type 1) and the models in-
cluding (model  type 2)  forest  cover were
compared. By subtracting the model type 1
from the model  type 2  a  coefficient  map
was obtained by scaling between 0 and 1
this  difference.  Our  interpretation  is  that
this  coefficient  quantifies  the  relative  ef-
fect of the forest cover on slope stability.

Weight-of-Evidence (WofE)
The WofE technique is based on a statisti-

cal  Bayesian  bivariate  approach.  Bayes’
theorem expresses the conditional proba-
bility  of  finding  supporting  evidence  s in
the study area given the class  Bi of the B
predicting factor, as  Bi variable represents
the presence of a factor that predicts the
potential evidence,  Bi^ is the absence of a
factor that predicts potential evidence, s is
the presence of the event and s^ is the ab-
sence of the event. The above-mentioned
conditional  probability  can  be  written  as
follows (eqn. 1):

where P(Bi|s) is the conditional probability
of  Bi given  s;  P(s)  is  the prior  probability
that  s exists in the study area;  P(Bi) is the
prior  probability  of  finding the class  Bi in
the study area.

Similarly,  the  conditional  probability  of
finding s in areas not covered by class Bi of
the factor B is as follows (eqn. 2):

where  P(Bi^|s)  is  the conditional  probabi-
lity of not finding the class Bi given s; P(s) is
the prior probability that s exists within the
study  area;  P(Bi^)  is  the  prior  probability
that class Bi does not exist within the study
area.

These conditional probabilities are incor-
porated into two logarithmic equations to
determine  positive  (eqn.  1)  and  negative
(eqn.  2)  weights,  from  which  a  weighted
contrast  (eqn.  3)  can  be  determined  for
each predictive factor’s class, which refle-
cts the overall spatial association between
landslides  and  the  factor  (Bonham-Carter
et al. 1989 – eqn. 3, eqn. 4, eqn. 5):
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Landslide susceptibility is calculated from
the combined probabilities associated with
the  different  components  of  the  model
(Barbieri & Cambuli 2009 – eqn. 6):

where  Of=Pf/(1-Pf)  is  the  prior  odds  of  a
landslide  in  the  study  area,  and  Pf=Af/At

where  Af is that portion of the study area
affected by  landslides,  and  At is  the total
study area.  The WofE approach was here
applied  using  the  spatial  data  modeller
compiled  in  the  Python  language  with
ArcGIS® 9.3 software (ESRI 2009) by Sawat-
zky et al. (2008).

Logistic Regression (LR)
Logistic regression is a common multiva-

riate approach that: (i) can be used to pre-
dict a result measured by a binary variable,
such as the absence or presence of landsli-
des, based on a set of one or more inde-
pendent variables  (predictive  factors);  (ii)
does  not  require the variables to be nor-
mally distributed; and (iii) the independent
variables can be either nonlinear, continu-
ous, categorical or a combination of both
(Hosmer  &  Lemeshow  1989,  Lee  &  Talib
2005).

The conditional probability that an event
will occur is given as follows (eqn. 7):

and the logistic model can be expressed in
its simplest form as (eqn. 8):

in  which  z can  be  expressed  as  a  linear
combination (eqn. 9):

where β0 is the intercept of the model, n is
the number of variables,  Xi (i = 1, 2, …,  n)
are the independent variables, and βi (i = 1,
2,  …,  n)  are  the  values  associated  with
each of the independent variables. P varies
between 0 and 1 on an S-shaped curve as z
varies from -∞ to +∞ (Hosmer & Lemeshow
1989).

The logistic multiple regression algorithm
within the free statistical programming lan-
guage “R” (R Core Team 2012) was used in
this study to obtain the coefficients for the
logistic  multiple  regression  model  accor-
ding to a forward stepwise method.

The  results  were  then  imported  in  the
ArcGIS software for mapping landslide sus-
ceptibility with a probability of occurrence
ranging from 0 to 1.

Case study
The  Alpine  region  is  characterized  by  a

strong link between local communities and
forests (Notaro & Paletto 2011) and by par-
ticular  attention  to  forest  multifunctiona-
lity (Grêt-Regamey et al. 2008). This is par-
ticularly relevant in the Italian Alps where
all  forests have been affected by humans
to some extent, either through direct pe-
riodic wood harvesting or by other forms
of land-use (e.g., grazing). Nevertheless, in
the last decades there has been a noticea-
ble reduction of the anthropogenic distur-
bances and, as a consequence, many forest
stands  have  developed  naturally  even  if
their composition and structure still reflect
past human activity (Motta & Lingua 2005).

The study area is inside the Veneto region
(Italy)  within  the geographic  zone of  the
Dolomites  (south-eastern European Alps),
dominated by mountain ridges rising up to
3000 m a.s.l., with their uppermost portion
consisting mainly of carbonate rocks (lime-
stone  and  dolostone)  that  form  isolated
peaks or high standing plateaus. The case
study  refers  to  the  Cadore-Longaronese-
Zoldo administrative  district,  covering ap-
proximately 32 000 ha and contains 7 muni-
cipalities  consisting  of  small  and  sparsely
populated villages. The administrative dis-
trict covers a latitude of 46° 11′ - 46° 26′  N,
and a longitude of 12° 05′ - 12° 30′ E (Fig. 1).

Artificial surfaces such as urban and built
up areas cover a small  percentage of the
study area (2%). Approximately, 10% is used
for agriculture and consists mostly of mea-
dows and alpine pastures; screes and rocks
outcrops cover a similar surface (11%). The
most  dominant  land  cover  type  is  forest
(77%).

The survey protocol was based on the fol-
lowing steps:
• delineation  of  the  landslide  detachment

areas from the IFFI Project (Italian Land-
slides Inventory);

• selection  of  the  predictive  factors  and
acquisition of the corresponding GIS lay-
ers;

• WofE modeling and evaluation of the pre-
dictive factor classes via W+and C;

• LR analysis  by  forward stepwise regres-
sion method;

• validation and assessment of the model’s
predictive potential using the ROC curve;

• comparison of the modeling results,  i.e.,
the  susceptibility  map  generated  using
only geo-environmental variables as pre-
dictive factors (model type 1)  vs. the sus-
ceptibility  map  generated  including  also
forest cover as a predictive factor (model
type 2).

Landslide database
The IFFI project constitutes the Italian na-

tional  landslide  inventory,  accomplished
from 1999 to 2004. In the 2005-2006 bien-
nium the inventory was updated based on
field  surveys,  collection  of  the  historical
and archive data, and aerial photo interpre-
tation (ISPRA 2008). Classification of land-
slides was made referring to Varnes (1984,
modified by Cruden & Varnes 1996), partly
modified  to  meet  the  practical  needs  of
surveying and mapping the landslides. Ad-
ditional types of movement were introdu-
ced:  sinkholes,  deep  seated  gravitational
slope  deformation,  areas  affected  by  nu-
merous rockfalls/topples, areas affected by
numerous sinkholes and areas affected by
numerous  shallow  landslides.  The  last
three classes were added in order to clas-
sify  those  landslides  which  are  limited  in
size, recurrent and referable to same type
of movement, which affect large sectors of
slopes in Italy (ISPRA 2008).

A total of 120 active landslides were iden-
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Fig. 1 - Map of the case study area and landslide inventory map (a). The locations of
the area within the Veneto region (b) and within Italy (c) are shown on the right.
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tified in the study area, covering close to
350 ha and accounting for 1.1% of the terri-
tory  (Fig.  1).  Although  the  exact  date  of
occurrence  for  most  of  the  considered
landslide is unknown, they are all referred
to the last two decades. According to the

landslide  classification  by  Varnes  partly
modified, 70 % of the inventoried landslides
account  for  three  types  of  mass  move-
ment:  rapid  flow,  rotational/translational
slides and complex slope movements (Tab.
1). Rock falls, that can occur from Dolomite
peaks, were not considered in this study.

The landslide detachment zone is where
failure occurs. Generally, landslide detach-
ment surface is located in the upper part of
steep  slope  within  the  boundaries  of
crown  portion  of  the  slide,  beyond  the
main scrap and the active scrap itself (Fig.
2).

Landslide  detachment  identification  and
delineation  were  drawn  from  the  IFFI  in-
ventory through an on-screen monoscopic-
visual  interpretation  technique  of  digital
aerial  photos taken in 2006-2007. The de-
tachment area of each landslide was deli-
neated  in  a  vector-type  spatial  database
using  the  ARCGIS  9.3  software  package.
The  geo-referenced  point  located  at  the
highest  point  of  the landslide crown was
selected  as  starting/ending  point  to  map
each detachment area. When the landslide
detachment zone was hidden or obscured
by tree cover, the identification was carried
out by considering the size of the features,
the  contrast  between  landslides  and  sur-
rounding areas, and the morphological ex-
pression (Tab. 2).

Landslide predictive factors
To apply the statistical approaches, a spa-

tial database was created. According to li-
terature (Carrara et al. 1991, Soeters & Van
Westen 1996,  Guzzetti  et al.  1999) and to
the  data  available  over  the  entire  study
area, six potential  predictive factors were
considered:  aspect,  slope,  lithology,  per-
meability, soil type, and forest cover. Influ-

ential climatic factors, such as rainfall, were
not taken into account because their varia-
tion is negligible within this area.

The DEM resolution is  the basis  for  the
mapping unit in landslide susceptibility as-
sessments (Ayalew & Yamagishi 2005,  Du-
man et al. 2006). Lee et al. (2004b) under-
took a comparative study of landslide sus-
ceptibility assessments at different spatial
resolutions: relationship between the land-
slide distribution and the predictive factors
generated  by  DEM  (constructed  from  a
1:5.000 scale topographic map) and vector
data  were  evaluated  with  spatial  resolu-
tions of 5, 10, 30, 100 and 200 m. The au-
thors  determined  that  a  30  m  pixel  size
was the maximum advised to obtain suita-
ble  predictive  capacity.  For  this  study,  it
was decided to use the best precision level
of  the available data  (20 m) as  the basic
mapping unit.  By using a small  pixel  size,
we  were  reasonably  confident  that  the
sampled  parameters  are  constant  across
the pixel size. Applying a cell size of 20 m
resulted in  807 255 pixels,  of  which 4 014
were  classified  as  landslide  detachment
area.

The  spatial  distribution  of  the  potential
predictive factors was crossed with those
of the landslides and detachment areas to
calculate the density values for each class
of the predictive factors (Fig. 3). The den-
sity was calculated according to  Ayalew &
Yamagishi  (2005):  the  ratio  between  the
area occupied by the landslide pixels  in a
given class of a certain factor and the total
pixels  in  that  class  was  first  determined;
this  was repeated for each of  the classes
available for that factor; these ratios were
then added, and each ratio was divided by
the  total  sum  to  obtain  the  density  with
respect to each factor.
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Tab. 1 - Landslides by landslide type oc-
curring in the study area considered.

Landslide type Number Area (ha)
Area prone to 
falls/topples

1 9

Shallow 2 23
Slow flow 4 11
Rapid flow 40 104
Complex 
movement

5 36

Fall/topple 2 10
Rotational and 
translational 
slide

63 150

Not available 3 5
Total 120 348

Tab. 2 - Landslide detachments by land-
slide  type  occurring  in  the  study  area
considered.

Landslide type Area (ha)
Areas prone to 
falls/topples

2

Shallow 17
Slow flow 5
Rapid flow 46
Complex movement 15
Fall/topple 5
Rotational and 
translational slide

70

Not available 2
Total 162

Fig. 2 - A rotational land-
slide within the case study 
area (Pontesei zone, muni-
cipality of Forno di Zoldo, 
province of Belluno, Italy). 
The detachment zone is 
delineated.
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DEM-derived factors: aspect and slope
The aspect and slope layers were derived

from DEM (resolution of  20×20 m) based
on  digital  topographic  maps  at  scale
1:5.000 of the study area revised in 2004.
The DEM was created by using an interpo-
lation  method  based  upon  the  ANUDEM
program developed by  Hutchinson (1989),
which  is  included  in  the  ArcGIS  9.3  soft-
ware package.

These predictive factors were treated as
discrete variables under the WofE analysis
(categorized  according  to  their  different
classes), while they were considered con-
tinuous variables as input for LR analysis.

The  aspect  indicates  the  influence  of
solar  radiation,  exposition  to  preferential
winds  and  local  weather  conditions  on
landslide distributions.  Aspect  discontinui-
ties  may  also  control  the  occurrence  of
landslides (Süzen & Doyuran 2004,  Mossa
et al. 2005,  Komac 2006). The aspect was
classified according to direction: north (0°-
22.5°;  337.5°-360°),  northeast  (22.5°-67.5°),
east (67.5°-112.5°),  southeast (112.5°-157.5°),
south  (157.5°-202.5°),  southwest  (202.5°-
247.5°), west (247.5°-292.5°) and northwest
(292.5°-337.5).  No  flat  class  was  found  in
the study area.  Most  events  occurred on
southern-oriented slopes (19% -  Fig. 3). For
LR  analysis  the  aspect  was  treated  as  a
continuous  variable  after  cosine  transfor-
mation.

Slope gradient is one of the factors most
closely associated with landslides (Guzzetti
et al. 1999, Ohlmacher & Davis 2003, Mossa

et  al.  2005,  Nefeslioglu  et  al.  2008).  The
slope  layer  was  derived  from  the  DEM
using  the  average  maximum  technique
(Burrough  &  McDonell  1998)  included  in
ArcGIS 9.3. The slope value was calculated
using  the  maximum  change  in  elevation
over the distance between each pixel and
its eight neighbors. We defined nine cate-
gories of  slope percentage slicing the va-
lues into equal intervals and computed the
corresponding percentage of landslide oc-
currence (Fig.  3).  In the study area,  most
landslides occur on slopes of 40 to 100%.

Other geo-environmental factors
Referring to the case study, three factors

hypothesized to act as other geo-environ-
mental  predictors  of  landslide  susceptibi-
lity were extracted from the regional spa-
tial datasets available: lithology, permeabi-
lity and soil types.

Different  lithological  types  are  affected
by  different  landslide  susceptibilities  (Dai
et al. 2001, Yesilnacar & Topal 2005, Nefesli-
oglu et al. 2008). The lithology layer, raster-
ized from a 1:250.000-scale geological map
of  the  Veneto  region  by  Dal  Piaz  (1988),
consists  of  19  rock  units  (see  Tab.  S1  in
Appendix 1 for a short description). Most
landslides occur in arenitic rocks belonging
to Auronzo,  Fernazza and La Valle forma-
tions (Ar - Fig. 3).

It  is  widely  recognized  that  geological
parameters greatly influence the occurren-
ce  of  landslides,  because  lithological  and
structural variations lead to a difference in

strength  and  permeability  of  rocks  and
soils,  runoff and groundwater movement.
In many cases, landslides are due to large
changes in the pore-water pressure due to
the  rise  or  fall  of  the  groundwater  level.
The Department of Geology of the Veneto
region  compiled  the  permeability  data
through the digital integration of the geo-
logical map at a scale of 1:250.000 (see Tab.
S2 in Appendix 1 for the classes of this pre-
dictive factor).  The permeability map was
prepared to show the relative permeability
of lithological units. The landslide densities
computed for rocks with low primary and
secondary permeability  were 31% and 19%,
respectively. The landslide density was also
high in rocks classified as having medium
permeability  (25%).  When  assessing  the
density of these permeability classes with
respect to the detachment zones, the ma-
ximum density value was confirmed for the
rocks with low primary permeability, while
the density increased to 26% for rocks with
low secondary permeability and decreased
to 18% for rocks with medium primary per-
meability (Fig. 3).

Sidle et al. (1985) observed that soil pro-
perties such as particle size and pore distri-
bution  in  the  soil  matrix  can  significantly
influence the slope stability. These proper-
ties  control  the  rate  of  water  movement
and the capacity of the soil to hold water.
In addition, finer soils tend to hold higher
volumes of water under unsaturated condi-
tions than coarse-textured soils. The digital
soil  information  was  obtained  from  a
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1:250.000-scale soil map of the Veneto re-
gion (ARPAV 2005).  The soil  types  identi-
fied in the study area are reported in the
Tab. S3 in Appendix 1. In the study area, the
soil type mostly affected by landslides was
the DB3 type (Fig. 3).

Forest cover
In  order  to  clarify  the  effects  of  forest

stands on the occurrence of landslides the
local forest cover map, available at a scale
of 1:10.000 (ARPAV 2005), was used for the
analysis.  Each  landslide  detachment  area
was assigned in the field to either forest or
open land and checked in the field. About
77% of the study area is covered by forest,
of  which  approximately  0.5%  is  included

within the landslide detachment areas. The
forest  stands  are  primarily  dominated  by
Larix decidua L., Fagus sylvatica L. and Pinus
sylvestris L.

The  protective  function  of  the  forest
against  landslide  is  immediately  apparent
from Fig. 3: the density of landslides in non-
forest areas is more than twice that in fo-
rest areas.

Preparation of the calibration and 
validation data, the ROC curve

The  tested  statistical  approaches  were
applied  by  two  stages:  model  calibration
and  model  validation.  Based  on  the  ran-
dom  partition  approach,  the  90%  of  the
original dataset was selected as the calibra-

tion  subset  used  for  building  the  model
and the remaining 10% was designed as vali-
dation subset used for independent verifi-
cation  of  the  model’s  predictive  perfor-
mance  via the  ROC  curve.  The  technique
using  a  ROC  curve  has  been  frequently
adopted to evaluate and compare models
(Yesilnacar  & Topal  2005,  Gorsevski  et  al.
2006,  Nefeslioglu et  al.  2008,  Cervi  et  al.
2010).  ROC  curves  can  be  prepared:  (i)
using the same landslide information used
to  construct  the  classification  model  (in
this case, the ROC curve measures the de-
gree of model fit); and (ii) for independent
landslide  information,  in  which  case  they
measure  the  classification  prediction  skill
(Van Den Eeckhaut et al.  2009),  as in the
present  case  study.  The  curve  plots  the
sensitivity  (true-positive)  vs. 1-specificity
(false-positive) to indicate the ability  of  a
model  to  correctly  discriminate  between
the positive and negative  observations  in
the validation space. High sensitivity often
implies  low specificity  and  vice  versa.  For
example, a conservative model would have
high sensitivity (a high number of correct
predictions)  but  low  specificity  (a  high
number  of  false  positives).  In  a  standard
ROC plot, the area under the curve (AUC) is
a quantitative measure of  the model  per-
formance: the higher is this value, the bet-
ter is the model fit (Pereira et al. 2012). The
statistical range from 0.5 (random predic-
tion, represented by the diagonal straight
line) to 1 (perfect prediction) can be used
to compare models. In contrast to success
and prediction rate curves, ROC curves are
not sensitive to prevalence,  i.e., considera-
ble difference between landslide free and
landslide-affected mapping units (Beguería
2006): therefore, ROC curves are conside-
red  a  more  appropriate  assessment  and
validation  tool  (Van  Den  Eeckhaut  et  al.
2009).

Results
The values  of  the weights  and the con-

trasts  and  their  standard  deviations  for
each predictive factor under the WofE ap-
proach  are  summarized  in  Tab.  3.  Accor-
ding to the weights assigned to the aspect
classes,  the highest positive correlation is
observed for the south-western slopes.  A
steeper slope indicates a greater probabi-
lity  of  landslide  detachment:  below  20%,
the contrast  is  -2.224,  indicating very  low
probability; from 40 to 60%, the contrast is
0.104  and  increases  in  the  three  subse-
quent classes. Among the considered litho-
logical classes, arenitic rocks belonging to
Auronzo, Fernazza and La Valle formations
(Ar)  and  calcareous  and  dolomitic  rocks
belonging  to  S.  Vigilio  group  (Co)  exhibit
the greatest importance. In the permeabi-
lity  classes,  the  contrast  value  is  higher
when the permeability is low. The contrast
is higher for some classes of Cambisols and
is relatively lower for Leptosols, indicating
an increase in the landslide occurrence in
soil  with  medium-to-fine  texture.  Finally,
the contrast value is much lower when fo-
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Tab. 3 - Weight and standard deviation (σ) of each predictive factor class. (a): classes
showing positive values of  W+. The definitions of the acronyms for lithology classes,
permeability classes and soil types are reported in  Appendix 1: Rock Units (Tab. S1),
Perm Classes (Tab. S2), Soil Types (Tab. S3).

Predicting
factor Class W+ σW+ W- σW- C σC

Aspect N -0.077 0.050 0.010 0.018 -0.087 0.053
NE -0.240 0.051 0.033 0.018 -0.273 0.054
E -0.329 0.050 0.050 0.018 -0.379 0.053
SE -0.122 0.047 0.019 0.018 -0.141 0.050
S a 0.134 0.046 -0.018 0.018 0.153 0.050
SW a 0.449 0.039 -0.079 0.019 0.528 0.043
W -0.449 0.064 0.042 0.017 -0.490 0.067
NW a 0.396 0.041 -0.061 0.018 0.457 0.045

Slope 0 - 20 -2.151 0.174 0.073 0.017 -2.224 0.175
20 - 40 -0.392 0.052 0.058 0.018 -0.450 0.055
40 - 60 a 0.081 0.035 -0.023 0.019 0.104 0.040
60 - 80 a 0.182 0.032 -0.060 0.020 0.242 0.038
80 - 100 a 0.353 0.037 -0.074 0.019 0.428 0.041
100 - 140 a 0.053 0.047 -0.008 0.018 0.060 0.050
140 - 180 -0.097 0.087 0.004 0.017 -0.101 0.088
180 - 220 -0.166 0.151 0.002 0.017 -0.169 0.152
> 220 -1.248 0.354 0.006 0.017 -1.254 0.354

Lithology Da a 0.107 0.061 -0.008 0.017 0.115 0.063
Dol -0.416 0.041 0.108 0.018 -0.524 0.045
Dd a 0.473 0.031 -0.141 0.020 0.614 0.037
Ar a 1.314 0.037 -0.170 0.019 1.484 0.042
CD -0.314 0.189 0.003 0.017 -0.316 0.190
AC -0.552 0.133 0.012 0.017 -0.563 0.134
Dm 0.000 0.000 0.000 0.000 0.000 0.000
DC a 0.261 0.135 -0.004 0.017 0.264 0.136
ACc a 0.456 0.159 -0.004 0.017 0.460 0.160
CA -2.384 0.316 0.028 0.017 -2.412 0.317
Arr 0.000 0.000 0.000 0.000 0.000 0.000
Co a 0.613 0.083 -0.019 0.017 0.632 0.085
Cs -1.583 0.169 0.039 0.017 -1.621 0.170
Ds -0.234 0.049 0.035 0.018 -0.269 0.052
Cco -0.831 0.098 0.040 0.017 -0.871 0.099
Cn 0.000 0.000 0.000 0.000 0.000 0.000
Cas -2.755 0.354 0.033 0.017 -2.788 0.354
Cam a 0.103 0.114 -0.002 0.017 0.105 0.115
CCcs 0.000 0.000 0.000 0.000 0.000 0.000

Permeability High -0.401 0.034 0.171 0.019 -0.573 0.039
Medium -0.033 0.060 0.003 0.017 -0.036 0.063
Medium (f) -0.347 0.045 0.068 0.018 -0.415 0.049
Low a 0.473 0.031 -0.141 0.020 0.614 0.037
Low(f) a 0.320 0.033 -0.091 0.019 0.411 0.038

Soil types DB1 a 0.159 0.024 -0.138 0.024 0.296 0.033
GA2 0.000 0.000 0.000 0.000 0.000 0.000
DB2 -0.158 0.054 0.018 0.018 -0.176 0.057
VB1 -1.036 0.122 0.035 0.017 -1.071 0.123
DA1 a 0.136 0.045 -0.021 0.018 0.157 0.048
DB4 -0.741 0.075 0.059 0.017 -0.801 0.077
DB5 -1.078 0.101 0.056 0.017 -1.134 0.102
DB3 a 0.503 0.041 -0.077 0.018 0.580 0.045
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rest cover is present (model type 2),  indi-
cating a statistically significant reduction in
the  occurrence  of  landslide  detachments
compared to the areas outside the forest
(Tab. 4).

Tab. 5 summarizes the overall model sta-
tistics  of  LR.  The McFadden pseudo R2 is
respectively  0.18  and  0.2.  The  McFadden
pseudo R2 measures the reduction in maxi-
mized log-likelihood. It is conceptually and
mathematically close to the ordinary least
squares  R2 (Menard  2000).  A  McFadden
pseudo R2 of 1 indicates a perfect fit, whe-
reas  a  pseudo R2  equal  to  0  indicates  no
relationship. When a pseudo R2 is  greater
than  0.2,  it  shows  a  relatively  good  fit
(Clark & Hosking 1986, Ayalew & Yamagishi
2005).

The  regression  coefficients  obtained  by
LR considering only the geo-environmental
factors (model type 1) are provided in Tab.
6. The influence of the selected factors on
landslide occurrence can be deduced from
the  sign  of  the  estimated  coefficients:  a
negative coefficient indicates that the cor-
responding factor is related to a safe area,
while  a  positive  coefficient  signifies  that
the probability of landslide detachment is
low. The slope is included with a positive
coefficient, while the aspect is not statisti-
cally significant: landslide probability incre-
ases with increasing slope, and no signifi-
cant additional interaction occurs with the
aspect.  Among  the  categorical  variables,
arenitic  rocks  belonging  to  Auronzo,  Fer-
nazza and La Valle formations (Ar) and to
S. Cassiano formation (ACc) and calcareous
and dolomitic rocks belonging to Serla Inf.
Dolostone  and  Werfen  formation  (DC)
have the strongest relationship with land-
slide occurrence, whereas the DB1 soil type
prove  to  have  a  slight  positive  influence.
Permeability is not a relevant predictor of
landslide  detachment  in  the  case  study:
only rocks with medium secondary perme-
ability  are  included  in  the  model  with
slightly significant coefficient.

Forest  cover has  a  high negative coeffi-
cient  (model  type  2)  which  provides  fur-
ther evidence that forest cover significant-
ly improves slope stability (Tab. 7).

Although similarities exist with respect to
predictor factors (e.g., the regression coef-
ficient sign for the slope and the exclusion
of aspect as a significant factor), differen-
ces arise between models of types 1 and 2.
For  example,  the  model  type  2  replaces
DA1  and  DB3  soil  classes  included  in  the
model  type  1  with  DB2 and DB4.  For  the
model type 2, medium secondary permea-
bility  class has a more significant positive
coefficient than model type 1.  Among the
lithological variable, arenitic rocks belong-
ing to Auronzo, Fernazza and La Valle for-
mations (Ar) and to S. Cassiano formation
(ACc) and calcareous and dolomitic  rocks
belonging to Serla Inf. Dolostone and Wer-
fen formation (DC) confirm the strongest
relationship with landslide occurrence, but
the  comparison  between  models  reveals
difference in estimated coefficient values.
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Tab. 4 - Weights and standard deviations (σ) obtained with respect to the presence/
absence of forest cover.

Class W+ σW W- σW C σC
Forest area 0.577 0.026 -0.267 0.022 0.844 0.034
Non-forest area -0.267 0.022 0.577 0.026 -0.844 0.034

Tab. 5 - Results of the overall model fit of logistic regressions.

Model Group Statistics
Model fitting 
criteria

Likelihood ratio tests

-2log likelihood χ2 df Prob
Model 
type 1

Parameters Intercept only 4987.80 - - -
Final 4023.24 3778.2 23 0

Pseudo R2 McFadden 0.19 - - -
Nagelkerke 0.23 - - -
Cox and Snell 0.30 - - -

Model 
type 2

Parameters Intercept only 4987.80 - - -
Final 3935.26 4210.1 24 0

Pseudo R2 McFadden 0.21 - - -
Nagelkerke 0.25 - - -
Cox and Snell 0.34 - - -

Tab. 6 - Logistic regression model (type 1). The definitions of the acronyms for the
lithology classes, permeability classes and soil types are reported in Appendix 1: Rock
Units (Tab. S1), Perm Classes (Tab. S2), Soil Types (Tab. S3).

Predicting factors β SE Prob
Intercept -1.222 0.115 0.000
Slope 4.411 0.358 0.000

Lithology Da 1.978 0.151 0.000
Dd 1.398 0.083 0.000
Ar 2.767 0.133 0.000
CD 0.940 0.312 0.003
Dm -15.171 348.659 0.965
AC 1.599 0.224 0.000
DC 2.325 0.468 0.000
ACc 2.089 0.284 0.000
CA -0.694 0.364 0.056
Arr -16.122 830.951 0.985
Co 1.359 0.177 0.000
Cs -1.767 0.198 0.000
Ds -0.873 0.378 0.021
Cco -0.702 0.144 0.000
Cn -16.526 243.214 0.946
Cas -3.459 0.522 0.000

Permeability Medium (f) 0.709 0.373 0.057
Soil type DB1 0.251 0.080 0.002

VB1 -2.484 0.193 0.000
DA1 -0.275 0.108 0.011
DB5 -2.424 0.224 0.000
DB3 -1.087 0.128 0.000
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Fig. 4 - ROC curves 
obtained using the
studied model 
types with respect 
to the validation 
dataset.



Cimini D et al. - iForest 9: 383-393

However, on the whole, the obtained evi-
dence  corroborates  the  known  interrela-
tionship between forest cover and geoen-
vironmental factors.

The results of the ROC analysis on the va-
lidation dataset are reported in Fig. 4. The
LR  approach  provides  results  similar  to
those  of  the  WofE  approach:  the  AUC

ranges from 0.757 for the WofE model type
1 to 0.768 for the WofE model type 2, while
the AUC ranges from 0.734 for the LR mo-
del type 1 to 0.779 for the LR model type 2.
LR approach shows a slightly better predic-
tive capability than WofE when forest co-
ver is included in the model.

Considering that LR approach shows bet-

ter performance than the WofE one, only
LR models were used to estimate the fo-
rest  protective  effect.  We subtracted the
modeled susceptibility value by the LR mo-
del type 1 (established without forest cover
as  predictor)  from  the value  provided  by
the model type 2 (including forest cover),
and  re-scaled  this  difference  between  0
and 1. The result is an empirical map which
shows  the  ranking  score  of  protection
function  associated  to  the  forest  stand
(Fig.  5):  values  close  to  0  indicate  forest
stands with an indirect protective function
while,  values  close  to  1  identify  forest
stands  with  a  high  potential  protective
function.  The  forest  with  high  protective
function are mainly located in the middle
part of the slope.

Discussion
In this  study,  we proposed an approach

to assess the protective function of forests
through  the  comparison  of  landslide  sus-
ceptibility  assessment  with  and  without
the current forest cover, with reference to
a case study in the Italian Alps. The WofE
and  LR  approaches  were  comparatively
applied  to  generate  multifactor  empirical
maps  of  landslide  detachment  susceptibi-
lity.

Both the WofE and the LR methods pin-
pointed the same predictors of the spatial
distribution of landslides. Among the con-
sidered factors, those related to slope, soil
type and forest cover prove to be the most
influential. The probability of occurrence is
highest  when  slope  is  between  40%  and
100%. The soil type affects the occurrence
of landslide detachment when soil particles
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Tab.  7 -  Logistic  regression (type 2).  The definitions of  the acronyms for  lithology
classes, permeability classes and soil types are reported in in Appendix 1: Rock Units
(Tab. S1), Perm Classes (Tab. S2), Soil Types (Tab. S3).

Predicting factors β SE Prob
Intercept -1.236 0.120 0.000
Slope 4.078 0.361 0.000

Lithology Da 1.557 0.142 0.000
Dd 1.276 0.086 0.000
Ar 2.636 0.115 0.000
CD 0.670 0.320 0.036
AC 1.499 353.183 0.965
Dm -15.297 0.214 0.000
DC 2.239 0.463 0.000
ACc 1.834 0.277 0.000
CA -0.743 0.370 0.045
Arr -16.025 836.911 0.985
Co 1.236 0.176 0.000
Cs -1.890 0.202 0.000
Ds -0.989 0.376 0.009
Cco -0.794 0.154 0.000
Cn -16.686 240.626 0.945
Cas -3.720 0.526 0.000

Permeability Medium (f) 0.750 0.371 0.043
Soil type DB1 1.172 0.079 0.000

DB2 1.141 0.114 0.000
VB1 -1.719 0.173 0.000
DB4 0.940 0.136 0.000
DB5 -1.276 0.204 0.000

Forest cover - -1.044 0.067 0.000
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Fig. 5 - Map of the relative 
protective function of the 
forest stands in the study 
area (LR approach).
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are large. The inclusion of forest cover sig-
nificantly improves accuracy in the predic-
tion  of  landslide  occurrence:  in  this  case
study, the density of landslide detachment
areas  outside  forests  is  more  than  twice
than that within forests.

Established  statistical  models  proved  to
be characterized by fair  predictive poten-
tial,  as shown by AUC higher than 0.7 for
the validation dataset.  The LR appears to
give more reliable results than WofE, as it is
more  sensitive  to  intermingling  between
predictive factors.

Overall, the comparison of LR model type
1 with LR model type 2 yielded a high signi-
ficance  of  forest  cover.  The  reason  is
related to the reinforcing effect on slope
stability of the diverse root systems of the
trees and the associated forest vegetation,
as stressed by various authors (Sidle et al.
1985,  Sidle & Ochiai  2006,  Marston 2010).
This effect can be also described as an in-
crease in the angle of internal friction or as
a virtual increase in soil density (Graf et al.
2009).

Assessing the protective effect of moun-
tain  forests  on  slope  stability  using  land-
slide  susceptibility  maps  contributes  to
support  resource  managers  in  evaluating
forest  management  practices  and  setting
up  suitable  measures  in  forest  planning.
However, the method may have some limi-
tations that should be stressed in order to
correctly  interpret  the  obtained  map  of
forest protective function. The first limita-
tion  relates  to  the  scale  of  analysis.  This
work  was  based  on  factor  data  available
for the study area at different scales. As a
result,  the accuracy of  boundaries in pro-
tective  function  within  the  map  may  be
potentially misleading at a certain extent.
The second key limitation is that the work
evaluates forest cover only, and does not
consider  forest  stand  characteristics  and
management practices,  since no data are
available for the entire study area. On the
other  hand,  it  is  worth to notice that  re-
search on stand characteristics (e.g., stand
structure,  crown  cover,  tree  density  and
composition) that optimize the protective
functions  of  forests  for  specific  hazards
(Bebi et al. 2001) is only at the beginning of
its  route:  stand  over-maturity  and  over-
stocking may determine the death and fall
rate of large trees or the windthrow rate
over  large  areas  with  a  consequent  pro-
longed loss in protection (Motta & Haude-
mand  2000,  Brang  et  al.  2001),  but  root
cohesion of  old-growth  forests  is  greater
than that  of  post-harvest,  second-growth
stands (Schmidt et al. 2001).

Conclusion
The main objective of  this  study was to

develop  a  multifactor  empirical  model  to
assess  the  relationship  between  forest
cover  and  landslide  detachment  at  stand
scale.  Multifactor  methodologies  typically
estimate landslide susceptibility  using the
relationship  between  past  landslide  pat-
terns and observed site characteristics.

The difference between models with and
without  the  inclusion  of  forest  cover  as
predictive  factor  has  been  exploited  to
spatially assess the potential role of forest
stands in controlling landslide detachment.
No comparable results or proposals can be
found in the literature relative to this issue,
despite  a  wealth  of  general  references
regarding  landslide  susceptibility  assess-
ment. By the empirical approach proposed
here, we are able to extract the effect of
forest  cover  on  the  probability  of  land-
slides.

To  simultaneously  sustain  several  diffe-
rent functions, large areas of forest should
be  managed  as  multi-purpose  forests.
Under such perspective, the spatial assess-
ment of protective functions allows fores-
ters to make conscious management deci-
sions by comparing the relative importance
of this distinctive function within the terri-
torial  context.  Ultimately,  the  modeling
approach  proposed  here  can  be  used  to
pinpoint forest areas with high degree of
protection against landslide occurrence on
a  stand  scale,  in  which  targeted  policies
and careful planning could be important in
maintaining  their  effectiveness  for  provi-
ding  protection  under  a  multifunctional
sustainable management framework.
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