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The study of afforestation is crucial to monitor land transformations and rep-
resents a central topic in sustainable development procedures, in terms of cli-
mate change, ecosystem services monitoring, and planning policies activities.
Although surveying afforestation is important, the assessment of the growing
forests is difficult, since land cover has different durations depending on the
species. In this context, remote sensing can be a valid instrument to evaluate
the afforestation process. Nevertheless, while a vast literature on forest dis-
turbance exists, only a few studies focus on afforestation and almost none di-
rectly exploits remote sensing data. This study aims to automatically classify
non-forest, afforestation, and forest areas using remote sensing data. To this
purpose, we constructed a reference dataset of 61 polygons that suffered a
change from non-forest to forest in the period 1988-2020. The reference data
were constructed with the Land Use Inventory of Italy and through photointer-
pretation of orthophotos (1988-2012, spatial resolution 50 × 50 cm) and very
high-resolution images (2012-2020, spatial resolution 30 × 30 cm). Using Land-
sat Best Available Pixel composites time-series (1984-2020) we calculated 52
temporal predictors: four temporal metrics (median, standard deviation, Pear-
son’s correlation coefficient R, and slope) calculated for 13 different bands
(the six Landsat spectral bands, three Spectral Vegetation Indices, and four
Tasseled Cap Indices). To verify the possibility of distinguishing afforestation
from non-forest and forest, given the differences between them can be mini-
mal, we tested four different models aiming at classifying the following cate-
gories: (i)  non-forest/afforestation, (ii)  afforestation/forest, (iii)  non-forest/
forest and  (iv)  non-forest/afforestation/forest.  Temporal  predictors  were
used with random forest which was calibrated using random search, validated
using k-fold Cross-Validation Overall Accuracy (OAcv), and further using out-of-
bag  independent  data  (OAoob).  Results  illustrate  that  the  distinction  of  af-
forestation/forest reaches the largest OAcv (87%), followed by non-forest/for-
est (83%), non-forest/afforestation (75%) and non-forest/afforestation/forest
(72%). The different OA values confirm that the difference in photosynthetic
activity  between forest  and  afforestation  can  be  analysed  through  remote
sensing to distinguish them. Although remote sensing data are currently not
exploited to monitor afforestation areas our results suggest it may be a valid
support for country-level monitoring and reporting.
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Introduction
According to Food and Agriculture Orga-

nization (FAO) definition, the forest is any
“territory  with  arboreal  coverage greater
than 10% compared to an extension greater
than 0.5 ha, where the trees reach a mini-
mum height of 5 m when ripe”, including
also: “[…] windbreak barriers and wooded
strips  of  a  width  exceeding  20m,  rubber
tree  plantations,  and  cork  trees” (FAO
2001). Thirty-one percent of the World’s to-
tal surface is occupied by forests (4.06 bil-
lion hectares) and Europe occupies a prom-
inent  position  in  this  context  since  Euro-
pean forests account for 1,017,461 ha (FAO
2020). Forests play a strategic role in terms
of  landscape,  history,  culture,  and  econ-
omy  (RAF  2019).  They  contribute  signifi-
cantly  to  human  well-being,  providing  a

multitude  of  ecosystem  services  among
which wood production, carbon sink, food
production,  soil  protection,  climate  con-
trol,  biodiversity  conservation,  environ-
mental decontamination, and hydrological
cycle regulation (Spadoni et al. 2020).

The Italian  forest  heritage is  one of  the
most important in Europe – 11.8 million ha
or 40% of the Italian land (Munafò 2018)  –
but it  is  exposed to many threats,  in the
majority  of  cases  directly  or  indirectly  re-
lated to anthropic activities. Indeed, great
pressure  is  currently  given  by  climate
change,  which  undoubtedly  led  to  an  in-
crease in the occurrence of extreme events
such  as  storms,  fires,  and  droughts  (For-
zieri et al. 2021). Therefore, it results of pri-
mary importance to efficiently monitor for-
est ecosystems and their status, as well as
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to  detect  change  processes  and  provide
new tools for their conservation.

Forest  change  processes  are territorial
transformations  of  primary  importance,
and have a central role in the definition of
policies aimed to preserve forest resources
and its ecosystem services provision. Inter-
national  organizations  and  other  institu-
tions  at  different  levels  have  undertaken
forest changes issues, giving definitions to
frame this phenomenon.

The United Nations Food and Agriculture
Organization  Forestry  Department  estab-
lished  a  series  of  definitions related  to
changes  between  forest  and  other  land
use classes, including the loss of forest cov-
er. According to these definitions,  it is pos-
sible to distinguish two different processes
of tree cover growth: (i)  afforestation,  i.e.,
the conversion from other  land uses into
the forest,  or  the increase of  the canopy
cover to above 10%; and (ii)  reforestation,
i.e.,  the re-establishment of  forest  forma-
tions after less than 10 years with less than
10% canopy cover due to human-induced or
natural perturbations. In this sense, refor-
estation is presented as a short-term proc-
ess that, if longer than 10 years, falls within
the definition of afforestation (FAO 2001).

Forest  changes  occur  heterogeneously
around the globe, mainly because of differ-
ent socio-economic backgrounds. While in
Africa and South America and Eastern Eu-
rope deforestation trends up, in the Euro-
pean  Mediterranean  areas  afforestation,
generally resulting from agricultural to for-
est  land-use  changes,  represents  broadly
the dominant process (Mather 2000, Gálos
et al. 2013, Palmero-Iniesta et al. 2020). Re-
garding the Italian territory, historical car-
tographic and inventory data confirms this
assumption,  showing  that  forest  surface
has been constantly increasing through the
years, with an average annual growth rate
of 0.3% (Angelucci 2011).

For the above reason, afforestation rep-
resents a process of increasing importance,
which certainly needs to be characterized
to make the most  of  its  potential  and to
correctly drive its development in line with
forest sustainable management principles.
As on one hand, afforestation certainly in-
volves all the benefits connected to forest
ecosystem services,  on the other hand, if
not well  managed, it can cause land frag-
mentation  and  other  related  issues  (UN-
FCCC 2013,  Czimczik et al.  2005). In other
words,  most of the issues and challenges
associated with afforestation depend on its
location (Mather 2000).

Since the afforestation process has a sig-
nificant effect on the land cover dynamics,
it is necessary to monitor its evolution, and
to  this  purpose many  different  indepen-
dent  data  in  national  and European  envi-
ronments are available, both inventory and
cartographic. One of the most important is
the Land Use Inventory of Italy (IUTI),  an
inventory data based on a sampling system
and the classification in 6 macro-categories
(Marchetti  et al.  2012).  Although IUTI is a

valuable source of information, it is seldom
updated (1990, 2000, 2008, 2013, and 2016)
and provides information on the predomi-
nant land cover in the area of analysis (in
Italy 1,217,032 random points distributed in
as many quadrants of  25 ha,  with a mini-
mum mapping unit of 5000 m2  and a mini-
mum width of 20 m).

In this context, Remote Sensing (RS) cer-
tainly  represents  a  high  potential  instru-
ment  (Koch  1999.  Filipponi  et  al.  2018),
which allows to analyse and classify large
areas, and enables to obtain frequently up-
datable  results  at  different  spatial  scales
(Agrillo  et  al.  2021).  Remote sensing data
analysis can be improved thanks to cloud
platforms as Google Earth Engine® (GEE  –
Gorelick et al. 2017), which allow managing
large  amounts  of  data  and  information
even with small computational capabilities.
Google  Earth  Engine® provides  numerous
satellite missions as Landsat and the more
recent European Sentinel  Copernicus pro-
gram which are by far the most used, being
open-source data and covering many years
of observations at different spatial resolu-
tion (Jönsson et al. 2018).

Information about land cover characteris-
tics  can  be  evaluated  using  the  different
bands of multispectral data, which can be
summarised  in  single  values,  called  Spec-
tral  Indices,  or,  when they are related to
vegetated land cover, Spectral Vegetation
Indices  (SVI  – Oberti  2009,  Spinsi  et  al.
2012).  The most used SVI in literature are
the  Normalized  Difference  Vegetation  In-
dex  (NDVI),  the  Enhanced  Vegetation  In-
dex (EVI)  and the Normalized Burn Ratio
(NBR).  Besides  the  SVI,  other  indices
known  as  Tasseled  Cap  (TC)  represent  a
valuable tool for this kind of analysis. These
indices resume multispectral data into four
dimensions of  the land cover  considered:
Brightness  (B),  Wetness  (W),  Greenness
(G) and Angle (A). SVI and TC acquire even
more value when referred to different peri-
ods,  allowing  to  build  temporal  trends
which represent important additional infor-
mation about the phenology of a given ter-
ritory (Persson et al. 2018). Hence, to elab-
orate a land cover classification and to pro-
duce  forest  cartography,  an  efficient
method consists  in analysing multitempo-
ral series of SVI or TC in order to attain syn-
thetic  though very  complete  information.
In doing so, it is possible to establish classi-
fication rules by imposing thresholds to dis-
criminate different land cover classes and
recognising the ones of interest (Smiraglia
et al. 2020,  Spadoni et al. 2020,  Luti et al.
2021, De Fioravante et al. 2021).

Landsat and Sentinel images  have differ-
ent  applications  related  to their  intrinsic
characteristics.  Landsat  data are available
since  the 1970s,  thus  providing very  long
time data series at medium spatial resolu-
tion  (30  m)  which  are  useful  to  analyse
land  cover  trends  and evolution.  Instead,
Sentinel  is  available  since  2015,  providing
images with high spatial resolution (10 me-
ters) and short revisiting time (in Italy 2/3

days), which make it a tool of great utility
for  applications  where  high  precision  is
needed.  Sentinel-1  data and Sentinel-2 im-
ages, thanks to their spatial and temporal
resolutions,  have  been  recently  used  in
many studies on the analysis of forest dis-
turbances  and  land  cover  change  detec-
tion. In  Laurin et al. (2021), Sentinel-1 data
were used to detect the damages caused
by the Vaia wind storm in 2018 in Northern
Italy,  while  Sentinel-2  data  were  used  to
map  clearcuts  in  Tuscany  (Francini  et  al.
2021),  and  to  estimate  areas  and  relative
confidence  intervals  of  forest  fires,  wind
damages  and  clearcuts  in  Italy  for  2018
(Francini et al., in review).

Other  research activities  have  taken ad-
vantage of the high temporal resolution of
some  satellite  images  to  monitor  land
cover and land cover changes at the annual
or  sub-annual  level.  De  Fioravante  et  al.
(2021) integrated  the  Sentinel-2  and  Sen-
tinel-1 data to assess land cover (2018) and
land  cover  changes  (2017-2018)  in  Italy,
while  Francini  et  al.  (2020) used  Planet-
Scope imagery to develop a methodology
to  detect  near-real-time  forest  distur-
bances  in  Tuscany  (Italy).  While  the  land
cover  and  its  changes  monitored by  re-
mote  sensing  is  a  widely  analyzed  topic,
afforestation assessment remains a theme
mainly  unrepresented,  being treated as  a
central subject only in a few studies (Raha
et al. 2010,  Shen et al. 2019) in which rela-
tively low accuracy was reached (less than
75%). For example,  Huang et al. (2017) and
Qiu et al. (2018) used MODIS images (500
m spatial resolution) to map forest growth
areas in China.  However,  products with a
spatial  resolution  of  500  meters  are  not
useful for monitoring afforestation in frag-
mented  and  morphologically  complex  ar-
eas  typical  of  the  Italian  territory,  where
afforestation  processes  are  characterised
by patches of limited size.

The present research aims to illustrate a
new methodology that exploits  the Land-
sat time series to demonstrate that RS can
provide valuable support not only for mon-
itoring stable land cover classes (De Fiora-
vante et al.  2021)  and forest disturbances
(Giannetti et al. 2020), but also for predict-
ing afforestation areas.

In the first section of this  paper, we de-
scribe  the  training  data  and  Landsat  im-
ages (1984-2020). Then we explain the use
of the input data to  assess  the temporal
trend difference of photosynthetic activity
of the  classification periods (non-forest, af-
forestation  and  forest). Afterwards, we fo-
cus on the use of the Random Forest™ (RF)
algorithm to automatically  distinguish the
classes  and  identify  the  combination  of
predictors  which  allows  reaching  the
largest accuracy.

In the last part of the paper, we discuss
the results and how they support the use
of  remote  sensing data  in  the distinction
between  non-forest,  afforestation  and  for-
est.
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Afforestation monitoring through remote sensing

Materials

Study area and reference data
We  selected sixty-one  areas  distributed

along  the  Italian  peninsula,  especially  on
the  mountains  range  (Alps  and  Appen-
nines) where afforestation occurred in the
period 1988-2020.  Forty-two  sites are  lo-
cated in areas  with elevation higher than
600 m a.s.l., and twenty-six of them are lo-
cated in areas above 1000 m a.s.l; the slope
of almost 3/4 of the points is higher than
10% (Fig. 1). These areas cover a surface of
269,197 ha, and each polygon is on average
4 ha large.  The  areas were defined using
the IUTI dataset and other images, as ex-
plained below.

Land Use Inventory of Italy (IUTI)
Land Use Inventory of Italy IUTI was real-

ized by the Italian Ministry of Environment
and  Protection  of  Land  and  Sea  in  1990
(updated in 2000, 2008, 2013, and 2016) in
the framework of the Extraordinary Plan of
Environmental Remote Sensing. It is com-
posed  of  1,217,032  randomly  selected
points, which have been classified through
photointerpretation,  considering  a  mini-
mum mapping unit of 5000 m2  and a mini-
mum width of 20 m. The classification sys-
tem is based on the Intergovernal Panel on
Climate Change guidelines,  and it  is  com-
posed  of  three  hierarchical  levels,  which
aim to  identify  the land cover  categories
which are important for the Kyoto Protocol
and to integrate the National Inventory on
Forest and Carbon Pools (INFC) results on
woods and other woody areas categories,
based on the FAO definition (Sallustio et al.
2016). Analysing the evolution of the data-
set through time makes it possible to iden-
tify  those  areas  where  afforestation  oc-
curred.

Landsat data and Best Available Pixel 
Composite

In this study, the Landsat surface reflect-
ance data available (for Landsat mission 5-
7-8) in the Google Earth Engine® (GEE) ar-
chive were used. We used Landsat missions
5, 7 and 8, because the product of the pre-
vious missions had a lower spatial and tem-
poral  resolution.  Moreover,  we  analysed
data starting from 1985 because they are
comparable  with  the  training  dataset.
Landsat images are composed of six bands:
three  visible  (blue,  green,  and  red),  one
near-infrared (nir), and two short-wave in-
frared (swir1 and swir2). All of them are al-
ready  processed  to  orthorectify  surface
and  brightness  (the  thermal  infrared)  re-
flectance,  atmospherically  corrected,  and
cloud masked. Landsat images were used
to  create  Italian  annual  composites  from
1984 to 2020, from June 1st until August 31st,
using the Best Available Pixel (BAP) proce-
dure (White et al. 2017).

The BAP aims to fill  the final image mo-
saic with the composite best available pixel
surface reflectance value. The selection of
the  best  pixel  of  the  images  collection

takes into account four different criteria: (i)
sensor score, to penalize Landsat 7 images
where the Scan Line Corrector malfunction
(SLC-off) is present; (ii) target day score, to
preferably select the images acquired close
to  a  defined acquisition day  (in  this  case
15th of August); (iii) distance to cloud/cloud
shadow  score,  to  decrease  the  scores  of
those pixels which are in the proximity the
cloud cover; (iv) opacity score (calculated
using opacity band produced by LEDAPS –
Schmidt  et  al.  2013),  to  prefer  the  pixel
with low opacity. Scores (i) and (ii) are ap-
plied to the whole image, while scores (iii)
and (iv) are applied to each pixel. BAP com-
posites  calculation  was  performed  using
the GEE application developed by  Francini
et  al.  (2021) which allows calculating and
downloading BAP composites  (Hermosilla
et al.  2015a,  2015b,  White et al.  2017). For
more information on the criteria  involved
in the BAP pixels selection see the BAP-GEE
documentation  (Francini  et  al. 2021).  For
more info on the BAP algorithm see White
et al. (2017) and Griffiths et al. (2013).

Methods
The  methodology  presented  here em-

ployed Landsat images to define the feasi-
bility of the assessment of afforestation ar-
eas in the last thirty-six years through re-
mote sensing. The analysis of many years
allows verifying the evolution of the classi-
fication periods,  considering the afforesta-
tion,  which can have a  different  duration
depending on the species.

Using 61 training areas consisting of poly-
gons  defined  using  IUTI  elements,  ortho-

photos and very high resolution images to
identify  the  afforestation,  a  preliminary
analysis of photosynthetic  activity in  non-
forest,  afforestation and  forest areas  was
developed.  Then  RF  algorithm,  calibrated
and validated, was applied to automatically
distinguish the non-forest, afforestation and
forest land  cover  (Fig.  2).  The  analyses
were  carried  out  using QGIS,  GEE® and R
softwares,  which are useful  in  processing
spatial and statistical data.

Reference data acquisition
The orthophotos used for the photointer-

pretation  process  are  available  as  Web
Map Services (WMS) of the Italian Ministry
of  Environment,  Land  and  Sea,  and  they
are referred to 1988-1989, 1994-1998 (black
and  white)  and  to  2000,  2006,  2012
(colour), with a spatial resolution of 50 cm.
The more recent Very High Resolution im-
ages  (30  cm  spatial  resolution,  available
since  early  2000s)  are  freely  available
thanks  to  the  web  service  of  QGIS and
Google Earth Pro®.

The  reference  dataset  (Fig.  1)  was  pro-
duced  through  photointepretation  of  or-
thophotos  and  Very  High  Resolution  im-
ages, available from 1988 to 2020; in addi-
tion to known areas, the IUTI dataset has
been used to establish the afforestation ar-
eas by considering the points which iden-
tify a forest change (from non forest to for-
est  area).  Sixty-one  training  areas  have
been collected and finally integrated with
other information on observation date and
polygon dimension.

Orthophotos  and  IUTI  datasets  were
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Fig. 1 - Study area and distribution of reference dataset. On the right, an example of
afforestation occurred between 1990-2000 is displayed:  in the upper image (1988)
there was no forest cover, in the centre (2000) the forest partially cover the area, in
the last image (2019) the forest cover is complete.
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used to define the temporal range in which
the  afforestation  process  occurred.  More
specifically,  two  years  were  identified:  (i)
the  year  corresponding  to  the  transition
between  non-forest and  afforestation;  and
(ii) the year corresponding to the transition
between afforestation and forest.

Temporal predictors calculation and 
analysis

The indices calculation for each compos-
ite  BAP  and  the  analysis  of  the  resulting
temporal series were carried out to calcu-
late  the temporal  statistics.  More specifi-
cally, we augmented the six Landsat bands
of our BAP composites (see above) by cal-
culating  seven  additional  indices:  (i)  Nor-
malized  Difference  Vegetation  Index
(NDVI); (ii) Normalized Burnt Ratio (NBR);
(iii)  Enhanced Vegetation Index (EVI); (iv)
Tasseled  Cap  brightness  (B); (v)  wetness
(W); (vi) greenness (G); and (vii) angle (A).
As a result of this step, we obtained 13 tem-
poral series of 36 years, hereinafter called
Time Series (TS – Fig. 3).

For each polygon and for each of the non-
forest,  afforestation,  and  forest temporal
ranges,  we  calculated  from  the  TS  four
temporal statistics: (i) the mean and (ii) the
standard deviation of the TS; (iii) the slope;
and  (iv)  the  Pearson’s  correlation  coeffi-

cient (r) of the regression line obtained by
linear interpolation of the TS over time. As
a result of this step, a set of 52 temporal
predictors  (13  TS  × 4  temporal  statistics)
were  obtained  to  distinguish  photosyn-
thetic  activity  between  non-forest  /  affor-
estation  /  forest  areas  and  to  investigate
the  differences  in  photosynthetic  trends
using density plots.

Random Forest™

Random Forest™ model and 
hyperparameters

To  classify  forest,  non-forest,  and  affor-
estation  areas  we  used  a  random  forest
model and the temporal predictors as vari-
ables.  Random Forest™ (RF)  is  a decision
tree algorithm often applied to forest clas-
sification  (Hawrylo  et  al.  2020),  where  a
subset of predictors is used to build a set
of  regression  trees,  applying  the  Out-Of-
Bag sample (OOB) procedure (Breiman &
Cutler 2001). RF is also useful as it allows to
assess the variable importance in the mod-
el.  RF  algorithm  was  chosen  because  it
achieves large accuracies when compared
with  other  machine  learning  approaches
(Nguyen et al. 2020) and it is not influenced
by overfitting (Belgiu & Dragu 2016). Ran-
dom  Forest  hyperparameters  are  model

parameters  that  can be calibrated to  ob-
tain the minimum error rate (Laurin et al.
2021). In this study, we tuned the following
two: max features (the number of features
considered) and max depth (the maximum
depth  of  the  tree,  the  longest  path  be-
tween the root node and the leaf  node).
The number of trees in the algorithm was
set  to  300  and  the  minimum  number  of
samples for splitting a node was set to one.

Max depth and max features calibration
Max  features  and  max  depth  hyperpa-

rameters were calibrated using the proce-
dure  named  random  search  (Bergstra  &
Bengio 2012, Laurin et al. 2021). Specifically,
we  defined  a  grid  of  max  features  (1-52)
and max depth (1-40) ranges, from which a
subset of 100 combinations were randomly
selected.  To  assess  the  performance  of
each  tested  combination  we  used  the  k-
fold Cross-Validation (CV) with k = 5.

Cross Validation serves to train and vali-
date the model on different data and it is
useful to reduce the overfitting (Whittaker
et al.  2010) and to test the robustness of
the model (Laurin et al. 2021). Using k-fold
CV,  the  dataset  is  divided  into  k groups,
which are composed of the same quantity
of data: one of these folds is defined as the
validation  group,  while  the  remaining  k-1
groups are considered as training data. The
procedure is  then repeated  k times,  each
time using a different fold as a validation
group.  Finally,  the  validation  data  is
merged and the k-fold CV Overall Accuracy
(OAcv) is calculated. As a result of this step,
we obtained the max features - max depth
combination  that  allowed  to  obtain  the
larger OAcv.

Performance assessment
Although  the  k-fold  CV  procedure  (see

above) allowed to rigorously estimate the
accuracy  (OAcv),  we  further  assessed  the
accuracy of the model exploiting the best
max features - max depth combination us-
ing Out Of Bag (OOB) data, which allows
getting an unbiased estimate of the error
(Breiman  &  Cutler  2001).  During  random
forest  training,  two independent sets  are
created: (i) the bootstrap sample,  i.e., the
data  chosen  to  be  “in-the-bag”  by  sam-
pling with replacement; and (ii) the out-of-
bag (OOB) sample, i.e., all data not chosen
in  the  sampling  process.  During  model
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Fig. 2 - Workflow of the applied methodology. The steps to distinguish among  non-
forest, afforestation and forest areas are briefly described.

Fig. 3 - Example of NDVI 
series in an afforestation 
pixel. For each classifica-
tion period the trend line 
was obtained and used to 
calculate the Pearson’s cor-
relation coefficient (r).
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training, this process is repeated and many
OOB samples  are created.  Since they are
never  used  to  train  the  model,  they  are
never-seen-before data  and  can  thus  be
used  to  assess  the  performance  of  the
model. Finally, all OOB samples are aggre-
gated and OOB predictions are compared
with reference data by constructing a con-
fusion matrix from which we calculated the
OOB. Overall Accuracy (OAoob), omission er-
rors (omissionsoob), and commission errors
(commissionsoob).  The  procedure  was  re-
peated four times, to compare the classifi-
cation models as follows: (i)  non-forest/af-
forestation, (ii) afforestation/forest,  (iii)
non-forest/forest,  and  (iv) non-forest/affor-
estation/forest. For each of them, classifica-
tion omission and commission error were
calculated, to respectively identify the pixel
non-classification and the misclassification.

Variables importance calculation
To  identify temporal  predictors  that

mostly contributed to increasing the accu-
racy of the model we analysed the variable
importance ranking outputted by random
forest.  The  variable  importance  was  ex-
pressed in terms of the Mean Decrease of
the  Gini  index  (MDG  – Nicodemus  2011).
MDG is the measure of the variable contri-
bution to the homogeneity of the random
forest trees component. Large MDG values
correspond  to  variables  that  relevantly
contributed to increasing the performance
of  the  model  and  thus  to  the  accuracy
achieved.  Conversely,  small  MDG  values
correspond to variables that did not con-
tribute  to  increasing  the  accuracy  of  the
model.

Results

Classification accuracies
Random  forest  validation  using  Out-Of-

Bag data (OAoob) was performed on all the

temporal predictors of the best iteration of
5-fold CV (Tab. 1). The largest OAoob was re-
ported  by  the  model  classifying  between
afforestation and forest (80%), followed by
the  classification  between  non-forest and
forest (77%).  Non-forest and  afforestation
and  non-forest/afforestation/forest  classifi-
cation model  reached an overall  accuracy
smaller than 70%.

For  each  class  of  the  four classification
models,  omission (omissionsoob)  and com-
mission (commissionsoob) have been calcu-
lated (Tab. 2). Both omission and commis-
sion  errors  are  larger  than  10%,  with  the
maximum  value  (40%)  registered  by  non
forest  class  in  the  classification  between
non-forest,  afforestation and  forest;  the

smallest error values are registered in the
afforestation and  forest  classification,
where omission error of the  forest class is
11% and the  afforestation one is 27%; as re-
gard  commission  error,  the  afforestation
registered  the  smallest  value  (14%),  while
the forest one is 24%.

The  large  random  forest  OAoob values
were reached thanks to the use of the hy-
perparameters with the largest OAcv, calcu-
lated using random search and 5-fold CV on
the  classification  models,  to  identify  the
couple of hyperparameters which allow to
reach  the  best  results.  Fig.  4 underlines
that the OAcv is larger than 65% in every hy-
perparameters  combination  considered.
Regarding the best iteration (value “max”
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Tab. 1 - Classification models overall accuracy of random forest (OAoob), considering all
the temporal predictors.

Classification models max features max depth OAoob

non-forest/afforestation 24 21 0.70

afforestation/forest 7 5 0.80

non-forest/forest 52 30 0.78

non-forest/afforestation/forest 24 28 0.67

Tab. 2 - Omission and commission error for each classification model.

Error
Type (%) Classification model non-forest afforestation forest

O
m

is
si

on
s o

ob non-forest / afforestation 26.2 34.4 -

afforestation / forest - 27.9 11.5

non-forest / forest 23.0 - 21.3

non-forest / afforestation / forest 36.1 39.3 23.0

C
om

m
is

si
on

s o
ob non-forest / afforestation 31.8 28.6 -

afforestation / forest - 13.7 23.9

non-forest / forest 21.7 - 22.6

non-forest / afforestation / forest 40.0 32.7 25.4
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Fig. 4 - Five-fold
cross validation
overall accuracy
(Oacv). The value

“max” is referred
to the best itera-

tion. Each OAcv of
every couple of

hyperparameters
for each classifica-
tion models is dis-

played, grouped by
accuracy.
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in  Fig. 5) the smallest OAcv is registered in
the  non-forest,  afforestation  and  forest
(72%) and non-forest and afforestation (75%)
classification  models.  The  model  perfor-
mance  is  larger  in  the  classification  of
non-forest/forest and  afforestation/forest,
where the best iteration OAcv reaches 83%
in  the  non-forest/forest classification  and
87% in afforestation/forest one.

Random forest temporal predictors 
importance and classification periods 
differences analysis

The importance ranking of  temporal pre-
dictors is illustrated in Fig. 5. The most im-
portant predictors for the model afforesta-
tion/forest were  the  median  value  of  the
green (MDG = 2.62) and the blue (MDG =
2.62) bands, the Tasseled Cap Greenness R
(MDG = 3.04), and the slope value of the
Tasseled Cap Brightness (MDG = 1.76) and
the  green  band  (MDG  =  1.72).  The  other
predictors had smaller importance scores.
In  the  non-forest and  forest models,  only
two predictors were indicated as more im-
portant,  that  is  the  median  value  of  the
green (MDG = 10.35) and the blue (MDG =
19.36) bands; the same ranking was regis-
tered in  the  non-forest,  afforestation, and

forest models, even if the other predictors
had a larger score than the ones of forest,
non-forest classification.  Finally,  the  first
predictor in the importance ranking of non-
forest and  afforestation models  is  the  R
value  of  the  EVI  (MDG  =  9.90)  and,  to  a
lesser extent, the slope value of the blue
band (MDG = 2.69).

Fig. 6 displays the temporal predictors of
the  non-forest, afforestation and forest, re-
lated to the variables which were consid-
ered as most important in the random for-
est. Tasseled Cap Greeness R value (TCG –
Fig.  6d),  registered the  largest  difference
between data, in particular the  non-forest
reaches  the  largest  values,  as  in  the  EVI
(Fig.  6c).  As  regard the median values  of
blue  (Fig.  6a)  and  green  (Fig.  6b)  bands
and  the  slope  values  of  green  (Fig.  6e)
band and TCB (Fig. 6f), the  forest reaches
the  largest  values,  and  the  afforestation
and the non-forest are quite similar.

Discussion
Afforestation monitoring is important be-

cause it influences ecosystem services but
it can also cause some issues, as land frag-
mentation and habitat loss. In this research
we aimed to demonstrate the efficacy of

remote sensing data in the assessment of
the  difference  in  photosynthetic  activity
and in the automatic classification of  non-
forest,  afforestation and  forest areas.  To
classify  them,  we  analysed  36  years  of
Landsat images using sixty-one training ar-
eas  and  a  random  forest  algorithm.  The
large  overall  accuracy  reached  with  the
classification  algorithm  supports  the  ap-
proach chosen,  confirming the efficacy of
the remote sensing in the automatic classi-
fication  between  non-forest,  afforestation
and forest.

The  methodology  by  using  Landsat  im-
ages  allows analysing  long time series  of
images, which is essential to assess forest
evolution,  which  is  generally  slow.  More-
over,  both  the  first  analysis  on temporal
predictors,  and  the  random  forest  algo-
rithm are easily replicable, also using differ-
ent  input  images.  To  limit  the  overfitting
due to  the use of  neighbouring pixels  as
training and validation data the data were
elaborated  at  polygon  level,  considering
the training data boundaries. Furthermore,
random search and  k-fold cross validation
have been useful to identify the combina-
tion  of  random  forest  hyperparameters
with  the  highest  accuracy,  to  ensure  the

225 iForest 15: 220-228

Fig. 5 - Importance rank-
ing of temporal predic-
tors. The importance 
value (Mean Decrease 
Gini) of each temporal 
predictors in every clas-
sification model is 
reported.
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maximum  performance  of  the  algorithm.
Considering the results of the random for-
est validation,  the difference in OAoob val-
ues can be due to the similarity in photo-
synthetic  activity  in  non-forest and  af-
forestation land  covers,  which  registered
smaller  accuracy  values,  while  forest and
non-forest or forest and afforestation classi-
fication  models  gives  better  results  be-
cause there is a stronger difference in the
spectral response of the two classes con-
sidered. It is notable that, even if the k-fold
cross validation and the Out-Of-Bag accu-
racy results  are not comparable,  the OAcv

and  OAoob  ranking  is  the  same,  with  the
largest accuracy value registered in  distin-
guishing between afforestation and  forest
and  the  smallest  ones  in  distinguishing
among non-forest, afforestation and forest.
This is important to support the results and
the methodology, because the same result
is  obtained from two independent valida-
tion models.

The  analysis  of  the temporal  predictors
importance  allowed  us  to  identify  those
variables  which  were  more  significant  to
separate  the  three classification  periods.
The  median  value  of  the  green  and  the
blue bands was part of the main predictors
in almost every distinction considered; this
probably concerned the fact that the blue
band is associated with soil moisture, while
the green band is associated with the re-
flectance value of the vegetation: the dif-
ferent water content and the different re-
flectance  value  are  therefore  two  impor-
tant factors to examine to classify non-for-
est,  afforestation and  forest.  Considering
the  other  predictors  in  the  importance
ranking,  the  Vegetation  Spectral  Indices
and the Tasseled Cap in the first positions
were those ones which are related to the
blue band (as TCB, EVI), to the green band
(TCG) and, to a lesser extent, those related
to  nir  and  red  bands,  as  the  Normalized
Difference Vegetation Index.

These  are  important  information  to  set
the best combination of parameters to ob-
tain the maximum accuracy in the distinc-
tion of  non-forest, afforestation and forest,
using a small number of input data. The re-
sults of the analysis of the temporal predic-
tors  confirm that the remote sensing data
allow to assess the differences in the trend
of  photosynthetic  activity  in  relation  to
non-forest,  afforestation and  forest.  The
median value of  blue  and green bands,  r
value of EVI, TCG, TCB and green slope val-
ues, which were the most important vari-
ables  in  the  random  forest  ranking,
showed the most significant dissimilarity in
the photosynthetic activity among classes.
This  can  be  due  to  several  reasons,  not
only to the spectral response of the differ-
ent vegetation type, but also to their phe-
nology; in fact, a non-forest land cover, like
pastures  or  other  grasslands,  could  be
more influenced by the microclimate or the
soil moisture than the afforestation or for-
est land cover. Similarly,  shrublands could
be more susceptible to local weather con-

dition than the  forest,  which is  the most
stable land cover.

There are few studies on the use of  re-
mote sensing to assess afforestation areas,
and most of them evaluate the forest gain
by  comparing  different  land  cover  maps.
For example,  Shen et al.  (2019) estimated
afforestation areas at a regional scale using
annual forest mask and combining them to
extract the afforestation areas.  Brovelli  et
al. (2020) and  Townshend et al. (2012) as-
sessed forest cover change using machine
learning and remote sensing data through
the comparison of two forest cover maps.
Other researches examine the forest gain

at global level using remote sensing, com-
paring  forest  and  non-forest  land  cover,
but they do not consider the afforestation
land cover (Hansen et  al.  2013,  Kim et al.
2014, Shimada et al. 2014).

One of the limits of the method proposed
is the medium spatial resolution of images:
in fact, Landsat images resolution is 30 me-
ters, and this could cause the omission of
the smaller elements.  This  could be over-
come by integrating other data, like radar,
lidar,  or  other  multispectral  images.  An-
other  issue could  occur  by increasing the
area of study outside the training areas; in
fact, it will be necessary to consider poten-
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Fig. 6 - Density distribution plots. The most important temporal predictors of non-for-
est, afforestation and forest are displayed; plots allow to estimate the differences of
the classification periods.
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tial  commission  or  omission  errors  which
could  be  due for  example to  the orogra-
phy, which could reduce the accuracy be-
cause of slope and shadows.

The results of the present research offer
the possibility to deepen the existing analy-
sis approaches, directly highlighting the af-
forestation, a land cover class which is not
stable through time, but represent a transi-
tion from non-forest  to forest cover.  Fur-
thermore,  it  will  be possible to elaborate
an afforestation areas map, at national or
European level. The new cartographic data
could  satisfy  the  requirements  proposed
by European legislation for monitoring ac-
tivities, being aligned to the EIONET Action
Group on Land monitoring in Europe (EA-
GLE) Concept. EAGLE is based on a classifi-
cation system which considers the distinc-
tion between land cover and land use and
it  is  composed of  three  descriptors  (land
cover components, land use attributes and
further  characteristics),  combined  to  de-
fine a  classification system  suitable to  be
integrated to existing classes, maintaining
the  three components  independent  (Arn-
old et al. 2013). The classification structure
of  the  EAGLE  matrix  specifically  includes
the afforestation land cover class. Consid-
ering  this  new  classification  method,  the
map will be aligned not only to the existing
cartographic  data,  but  also  to  the  future
steps  of  the  land  cover  monitoring  and
classification planned by Europe and Italy,
being easily updated in all the descriptors.

Conclusions
Non-forest, afforestation and forest can be

automatically predicted using Landsat data
and classification models aimed to evaluate
the  different  responses  of  the  photosyn-
thetic  activity  of  non-forest,  afforestation
and forest areas. Since this approach is suit-
able  for  application at  different  scales  of
analysis and thanks to the results obtained
in this study, the methodology will be ap-
plied to the entire Italian national area, to
locate  the  potential  afforestation  areas
outside the training areas. This step will al-
low to create a map of afforestation areas
across Italy. This product follows the indi-
cations given in article 15 of the Italian na-
tional  legislation on  forestry  and  forestry
supply  chain  (legislative  decree  34/2018),
which  encourages  the  creation  of  a  geo-
referenced forest mapping and contributes
advantageously  to  forest  planning  and
management activities. In fact, the expan-
sion of forest areas is often due to the agri-
cultural and pasture surfaces loss (Munafò
2018, RAF 2019), and this could bring to an
uncontrolled  vegetation  growth,  which
needs  to  be  located  and  monitored,  to
avoid negative consequences, such as fires,
that could be more destructive if the vege-
tation is not managed.

The afforestation area assessment can be
important  to  analyze  the  forest  growth
trend,  allowing to make forecasts on the
forest evolution,  both in quantitative and
qualitative  terms.  Moreover,  the  integra-

tion between the map and other data will
allow to study the evolution of the forest
areas to assess the forest ecosystem ser-
vices.
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