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Climate change is being intensified by anthropogenic emission of greenhouse
gasses, highlighting the value of forests for carbon dioxide storing carbon in
their biomass. Seasonally dry tropical forests are a neglected, threatened, but
potentially critical biome for helping mitigate climate change. In South Amer-
ica, knowing the amount and distribution of carbon in Caatinga seasonally dry
vegetation is essential to understand its contribution to the global carbon cy-
cle and subsequently design a strategic plan for its conservation. The present
study aimed to model and map the spatial distribution of the potential forest
biomass stock across 32 forest fragments of Caatinga, in the state of Bahia,
Brazil,  using  regression  kriging  and  Inverse  Square  of  Distance  techniques,
building from point measurements of vegetation biomass made on-the-ground
in ecological plots. First, a model for estimating biomass was fitted as a func-
tion of environmental variables to apply regression kriging, and then applied
to the maps of the selected components. Elevation, temperature, and precipi-
tation explained 46% of the biomass variations in the Caatinga. The model
residuals showed strong spatial dependence and were mapped based on geo-
statistical criteria, selecting the spherical semivariogram model for interpola-
tion by ordinary kriging. Biomass was also mapped by the Inverse Square of
Distance approach. The quality of the regression model suggests that there is
good potential for estimating biomass here from environmental variables. The
regression kriging  showed greater  detail  in  the  spatial  distribution  and re-
vealed a spatial trend of increasing biomass from the north to south of the do-
main. Additional studies with greater sampling intensity and the use of other
explanatory variables are suggested to improve the model, as well as to maxi-
mize the technique’s ability to capture the actual biomass behavior in this
newly studied seasonally dry ecosystem.
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Introduction
Seasonally  dry  tropical  forests  (SDTFs)

act as important CO2 sinks as they promote
carbon  fixation  from  the  atmosphere  in
their plant biomass and contribute to the
quantification and cycling of nutrients (Al-
thoff et al. 2018). Knowing the biomass re-
tained  in  plants  allows  us  to  understand
carbon dynamics,  thus  providing a  better
understanding of the impacts of deforesta-
tion on global  warming.  In  addition,  they
provide helpful information to guide forest
management  practices  and  inform  deci-
sion-making in public and non-governmen-
tal  sectors.  For example,  many efforts  in-
cluding  floristic  inventory  and  vegetation
monitoring  initiatives  in  tropical  regions,
such  as  the  ForestPlots  Plot  Network
(ForestPlot.net  2021)  and  SDTF  research
protocols (DRYFLOR et al. 2016, Moonlight
et  al.  2021),  have  motivated  civil  society
and government agencies to promote sus-
tainable  environmental  land  management
through  tree  planting  and  ecological  res-
toration  (Crouzeilles  et  al.  2016).  Setting
targets  and  assessing  the  proportionate
contribution  of  such  projects  requires  a
solid initial understanding of the potential

© SISEF https://iforest.sisef.org/ 116 iForest 16: 116-126

(1) Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Florestais, 
45031-900 Vitória da Conquista, BA (Brazil);         (2) Universidade do Estado do Amapá, De-
partamento de Engenharia Florestal, 68900-070 Macapá, AP (Brazil); (3) Universidade de São 
Paulo, Escola Superior de Agricultura Luiz de Queiroz, 13418-900, Piracicaba, SP (Brazil); (4) 
Instituto de Biologia, Universidade Federal da Bahia, 40.026-010, Salvador, BA (Brazil); (5) 
Tropical Diversity Section, Royal Botanic Garden Edinburgh, EH3 5NZ, Edinburgh (United King-
dom);     (6) Wageningen University, Plant Ecology and Nature Conservation Group, 6700 AK, 
Wageningen (Netherlands); (7) Departamento de Ciências Biológicas, Universidade Estadual 
de Feira de Santana, 440369-00, Feira de Santana, BA (Brazil); (8) Colegiado de Ecologia, 
Universidade Federal do Vale do São Francisco, 563049-17, Senhor do Bonfim, BA (Brazil); (9) 
Universidade Federal de Lavras, 37200-900, Lavras, MG (Brazil); (10) Tropical Diversity Sec-
tion, Royal Botanic Garden Edinburgh, EH3 5NZ, Edinburgh (United Kingdom); (11) University 
of Exeter, EX4 4QG, Exter (United Kingdom); (12) School of Geography, University of Leeds, 
LS2 9JT, Leeds (United Kingdom)

@@ Robson Borges de Lima (robson.lima@ueap.edu.br)

Received: Mar 24, 2022 - Accepted: Feb 14, 2023

Citation: Viana Santos HK, Borges de Lima R, Figueiredo de Souza RL, Cardoso D, Moonlight 
PW, Teixeira Silva T, Pereira de Oliveira C, Alves Júnior FT, Veenendaal E, de Queiroz LP, 
Rodrigues PMS, dos Santos RM, Sarkinen T, de Paula A, Barreto-Garcia PAB, Pennington T, 
Phillips OL (2023). Spatial distribution of aboveground biomass stock in tropical dry forest in 
Brazil. iForest 16: 116-126. – doi: 10.3832/ifor4104-016 [online 2023-04-17]

Communicated by: Emanuele Lingua

Research ArticleResearch Article
doi: doi: 10.3832/ifor4104-01610.3832/ifor4104-016

vol. 16, pp. 116-126vol. 16, pp. 116-126

http://www.sisef.it/iforest/contents/?id=ifor4104-016
mailto:robson.lima@ueap.edu.br


Viana Santos HK et al. - iForest 16: 116-126

stock  of  aboveground  biomass  for  each
ecosystem  at  both  regional  and  global
scales (Crowther et al. 2015).

While the importance of this information
for  the  conservation,  management,  and
sustainable use of SDTFs is recognized (Da
Silva et al. 2017), regional spatial models of
aboveground  biomass  (i.e.,  green  or  dry
weight  at  tree  level  or  species  at  a  local
scale) in exact spatial resolution are still ab-
sent in many SDTF areas, especially in the
Caatinga  region  of  northeastern  Brazil.
These  biomass  maps  are  needed  to,  in
turn, create spatial understanding of varia-
tion in carbon stocks and carbon storage
potential.  Some  maps  have  been  devel-
oped continental  and globally  (Saatchi  et
al.  2011),  however,  their  relatively  coarse
spatial resolutions (≥ 1 km) limit their appli-
cations  for  local  forest  management,  as
does  the fact  that  they contain  relatively
little information about the distribution po-
tential  of biomass in space (Virgens et al.
2016) and its relationships with the region’s
intrinsic  environmental  factors  or  gradi-
ents.

Measuring environmental  variables is  an
essential  step  towards  understanding  on
how to better quantify ecological patterns
and the distribution of biomass and carbon
(De Meira Junior et al. 2020). For example,
positive  relationships  between  biomass
stock  and  environmental  factors  are
shared across various vegetation types and
ecological gradients (Slik et al.  2009). De-
spite encompassing the largest expanse of
the South American SDTF biome and with
the highest species richness and endemism
(De  Queiroz  et  al.  2017,  Fernandes  et  al.
2020),  in  situ observations  on  biomass
stock  and  environmental  factors  for  the

Caatinga  seasonally  dry  forests  are,  how-
ever,  still  incipient  and little  known (Oliv-
eira et al. 2021).

The Caatinga vegetation occurs under ex-
treme edaphoclimatic characteristics and is
perhaps  the most  vulnerable Brazilian  re-
gion  to  climate  change  (Ganem  2017).  In
addition, the Caatinga is highly threatened
by inappropriate land use practices. Due to
the high population density  of  the north-
eastern  semi-arid  region,  its  natural  re-
sources are widely exploited, which results
in reduced production and biomass stocks,
in  addition  to  fragmenting  the  landscape
into different physiognomies, stages of re-
generation,  and  land  uses  (Althoff  et  al.
2018). This culminated in an intense degra-
dation process that has advanced recently
(Vieira et al. 2020).

Thus,  there  is  a  need  to  develop  tech-
niques to estimate and map biomass and,
in turn, produce reliable information on the
potential aboveground stock of forest for-
mations and support estimates of  carbon
dynamics.  This  work examines the poten-
tial  use  of  global  climate  datasets  devel-
oped  from  satellite  observations  to  map
patterns  and  potential  distribution  of
aboveground biomass in Caatinga vegeta-
tion.  Unlike  wetlands  with  high  biomass
driven  primarily  by  climatic  factors  (e.g.,
temperature  and  precipitation)  among
other  spatially  explicit  environmental  fac-
tors or gradients, the Caatinga vegetation
has  lower  biomass  due  to  its  adaptive
metabolic and functional characteristics for
the region, but a comparatively high poten-
tial for carbon storage (Santos et al. 2016).
However,  there  is  little  local  evidence  to
predict biomass patterns and potential dis-
tribution from environmental factors.

These  regional  characteristics  favor  the
use of environmental variables to develop
ecological  and  distribution  models.  The
available remote sensing data provide spa-
tially refined information on landscape and
vegetation heterogeneity over the Caatin-
ga SDTFs that can be readily incorporated
into models to predict the potential distri-
bution of biomass. These models are strict-
ly mathematical or based on specific eco-
logical  theories  (Fagua  et  al.  2021).  A  de-
tailed discussion or review of these ecolog-
ical  models  and  theories  is  beyond  the
scope of this  paper, and has already been
fully addressed elsewhere (Elith et al. 2010,
Hijmans & Elith 2017).  Here,  we are inter-
ested in modeling and mapping the Caat-
inga  biomass  distribution  to  understand
how available resources  and environmen-
tal  factors  condition  these  biomass  pat-
terns at the biome scale. We tested geosta-
tistical  methods  that  integrate  remote
sensing  data  and  the  location  of  geo-
graphic points from ground-based plot in-
ventories in different Caatinga forest frag-
ments.  With  this  approach,  we  aim  to
model  and map the potential  distribution
of biomass and evaluate the contribution
of  each  environmental  variable  in  predic-
tive maps for the Caatinga SDTF in Bahia.
Therefore, we started from the hypothesis
that  climatic  and  relief  factors  have  a
strong influence on aboveground biomass
patterns in Caatinga vegetation. The paper
is organized into four sections: (i) descrip-
tion  of  biomass  and  environmental  data;
(ii)  description  of  spatial  modeling  and
main  environmental  factors;  (iii)  assess-
ment  of  potential  range  distributions  of
biomass;  (iv)  discussion  on  the  potential
distribution of total biomass for the charac-
terization  of  suitable  areas  for  conserva-
tion and forest management.

Material and methods

Characterization of the study area
The area covered by this study is  located

in the state of Bahia (Fig. 1) and comprises
a seasonally dry vegetation widely known
as  Caatinga,  the  most  species-rich  and
largest  expanse  of  the  South  American
SDTF biome (De Queiroz et al. 2017, Fernan-
des et al. 2020). The Caatinga domain occu-
pies  an  area  of  351,402  km²  in  the  state,
covering about 62% of the Bahian territory
(IBGE 2021).

BSh climate according to the Köppen cli-
mate  classification (Alvares  et  al.  2013)  is
predominant in this area, characterized as
a dry and hot semi-arid climate, which asso-
ciates a scarcity of rainfall with strong inso-
lation and high temperatures. The tropical
As climate is also present, with a dry sum-
mer season, and the Aw type on the west
side, with a dry winter. There are also sub-
tropical  humid  zones  with  mild  summers
(Cwb  climate  with  dry  winters,  and  Cfb
without a dry season) in a small region in
the  center-south,  where  altitudes  are
above 1000 m a.s.l.

117 iForest 16: 116-126

Fig. 1 - Location of the sampled fragments in the Caatinga biome, in the state of Bahia,
Brazil.
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There is irregularity in the rainfall distribu-
tion in time and space. This region receives
from  300  to  1180  mm  of  annual  rainfall;
however, an expressive part of the area re-
ceives average rainfall of less than 750 mm
year-1.  Moreover,  the  precipitation  is  less
than  400  mm  per  year  in  a  small  part.
About 50% of these annual totals are gener-
ally concentrated in just three months (Fick
& Hijmans 2017).

Temperatures also vary in space, with an-
nual averages between 16 and 29 °C, how-
ever,  they are predominantly above 24 °C
(Fick & Hijmans 2017).  There are plateaus
and mountains which can exceed 1000 m in
altitude.  Among  these  geomorphologies
are depressions which occur more expres-
sively throughout the area.  The relief has
an influence on the spatial patterns of tem-
peratures (Castanho et al. 2020).

The  soil  orders  that  occur  are:  Neosols
(typical  in  the  semi-arid  environment  of
northeastern  Brazil,  characterized  by  low
natural fertility, low water retention capac-
ity  and  low  levels  of  organic  matter),
Latosols,  Planosols,  and  even  small  frag-
ments of Cambisols, Argisols and Luvissols
(Marques et al. 2014, IBGE 2021).

The  most  representative  vegetation  is
steppe  savanna,  which  has  a  deciduous,
gray  and  thorny  physiognomy  in  the  dry
season,  interspersed  with  cactus  and
bromeliads.  This  landscape  is  interrupted
by seasonal semi-deciduous and deciduous
forest fragments which occupy regions of
soils  with  rocky  outcrops  and karst  relief
associated with more clayey soils, and have
the  presence  of  limestone  in  the  valleys
and slopes.  The latter  is  more expressive
on the west side of the study area. There is
the occurrence of savanna and small dense
ombrophilous  forest  fragments  in  moun-
tainous  regions,  swamps  and  milder  cli-
matic  pockets,  common  in  the  center-
south of the state of Bahia (IBGE 2021).

Biomass data estimates
The database for biomass estimation was

obtained  from  forest  surveys  carried  out
within the study area, which include a total
of 836 plots distributed in 32 forest frag-
ments (Fig. 1). A total of 21 forest invento-
ries  carried  out  between  2016  and  2020
were provided by the Institute for the Envi-
ronment and Water Resources of the State
of  Bahia  (INEMA)  to  compose  this  data-
base. The number and size of plots varied
between inventories at 0.02 to 0.1 ha. Tree
individuals were measured in terms of di-
ameter at breast height (DBH),  measured
at  1.30  m  above  ground  level,  adopting
DBH greater than or equal to 10 cm as an
inclusion criterion (Fig. 2).

Data from 10 permanent plots of up to 1
ha were added to this database, registered
in  ForestPlots.net  (Lopez-Gonzalez  et  al.
2011,  ForestPlot.net 2021),  and which con-
tribute  to  the  Nordeste  and  Dryflor  proj-
ects.  These  plots  were  inventoried  be-
tween  2017  and  2018.  Each  plot  for  this
data was assumed to be a forest fragment

and only trees with DBH ≥ 10 cm were con-
sidered.

The  Contendas  do Sincorá  National  For-
est was still  considered as a  single forest
fragment in a survey carried out in 2015, in-
ventoried  by  a  partnership  between  the
Caatinga Forest Management Network and
the  Forestry  Soil  and  Forest  Ecology  and
Protection  Laboratories  of  the  University
State of Southwest Bahia (UESB). The mea-
surement of arboreal individuals with DBH
≥ 15 cm was performed for this survey.

The  equation developed  by  Sampaio  &
Silva (2005) was  applied to the individual
data of the trees in the plots to predict the
above ground woody biomass.  The equa-

tion is specific to the Caatinga vegetation
and is the most used by the scientific com-
munity (eqn. 1):

(1)

(R2 =  92%,  RMSE = 3.8 kg,  bias  =  7.6%) in
which AGB is the aboveground dry biomass
for each tree individual (kg), DBH is the di-
ameter  measured  at  1.30  m  above  the
ground (cm) and R² is the coefficient of de-
termination. RMSE (root mean squared er-
ror)  is  the  measure  that  calculates  the
“root  mean  squared  error”  of  the  errors
between observed values (actual) and pre-
dictions (hypotheses).
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Tab. 1 - Bioclimatic variables and elevation above sea used to adjust the biomass pre-
diction model in the caatinga, Bahia.

Variables Descriptions

BIO 1 Average annual temperature (°C)

BIO 2 Average daytime range (monthly average) (°C)

BIO 3 Isothermal (Bio 2/ Bio 7) (·100) (°C)

BIO 4 Temperature seasonality (standard deviation·100) (°C)

BIO 5 Maximum temperature of the warmest month (°C)

BIO 6 Minimum temperature of the coldest month (°C)

BIO 7 Override temperature range (Bio 5 - Bio 6) (°C)

BIO 8 Average temperature of the wettest quarter (°C)

BIO 9 Average temperature of the driest quarter (°C)

BIO 10 Average temperature of the warmest quarter (°C)

BIO 11 Average temperature of the coldest quarter (°C)

BIO 12 Average annual rainfall (mm)

BIO 13 Rainfall in the wettest month (mm)

BIO 14 Rainfall of the driest month (mm)

BIO 15 Seasonality of precipitation (Coefficient of variation) (mm)

BIO 16 Precipitation of the wettest quarter (mm)

BIO 17 Rainfall in the driest quarter (mm)

BIO 18 Precipitation of the warmest quarter (mm)

BIO 19 Rainfall of the coldest quarter (mm)

Elev Elevation (m)

Fig. 2 - Flowchart of Regression Kriging (GWR-K) and AGB mapping predictions in this
study. iF
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The biomass stocks of trees per plot were
summed and were extrapolated in ton per
hectare (Mg ha-1) according to the size of
the plots. Due to the heterogeneity in the
biomass stock of the plots within the same
fragment, the dataset used in the analyzes
was the average of  the biomass  stock of
the plots in each of the 32 forest fragments
(Scolforo et al. 2016).

Spatial modeling of biomass stock
The  biomass  stock  mapping  was  per-

formed using regression kriging (RK) and
Inverse  Squared  Distance  (IQD)  tech-
niques.  Kriging  with  regression  combines
two processes: elaboration of a global map
which illustrates the spatial behavior of the
biomass, generated from a multivariate re-
gression  model;  and  subsequent  applica-
tion  of  ordinary  kriging  on  the  residuals
generated by the regression model.

In order to introduce specific characteris-
tics of each micro-region of the study area
and  provide  a  continuous  data  base,  the
biomass was modeled as a function of spa-
tial variables obtained in raster layers (Tab.
1). These variables demonstrated a poten-
tially  significant relationship with the spa-
tial distribution of forest attributes in previ-
ous studies (Silveira et al. 2019).

After  estimating the  biomass  stock,  the
data were associated with a set of predic-
tor variables at each location. Twenty-eight
geospatial  covariates  were  selected  and
grouped  into  climatic  and  topographical
subsets. The covariates were obtained us-
ing  satellite  remote  sensing  and  globally
distributed  terrestrial  weather  stations  in
raster  format.  Each  raster  layer  is  a  spa-
tially explicit grid image, where each pixel
represents the value of  the described co-

variate.
The  covariates  were  grouped  into  two

distinct  categories:  topographical  and  cli-
matic.  Topographic covariates will  include
elevation,  terrain  slope,  aspect  (such  as
north and east), latitude (such as absolute
latitude value), and a terrain roughness in-
dex  (IRT).  The  climatic  covariates  will  be
composed of potential evapotranspiration,
solar  radiation,  wind  speed,  cloud  cover,
and the set of 19 bioclimatic variables, 11 of
which are derived from temperature: Aver-
age annual temperature, Average daytime
interval (Monthly Average: max temp - min
temp), Isothermal,  Temperature Seasonal-
ity  (standard  deviation  · 100),  Maximum
temperature  of  the  hottest  month,  Mini-
mum  temperature  of  the  coldest  month,
Annual temperature range, Average of the
wettest  quarter,  Average  of  the  driest
quarter,  Average of  the  warmest  quarter
of  the  year  and  Average  of  the  coldest
quarter of the year; and eight variables de-
rived from Rainfall: Annual Rainfall, Rainfall
in the coldest month, Rainfall in the driest
month, Seasonality of Rainfall  (Coefficient
of variation), Rainfall  in the wettest quar-
ter, Rainfall in the driest quarter, Rainfall in
the  hottest  quarter  and  Rainfall  of  the
coldest quarter). The complete description
of the topographic covariates can be con-
sulted  at  http://earthenv.org,  and  for  the
climatic  covariates,  more  information can
be obtained at https://www.worldclim.org.

All variables acquired to fit the model, ex-
cept  latitude  and  longitude,  were  pro-
cessed  in  the  R  software  (R  Core  Team
2021). To obtain the values of the geospa-
tial covariates corresponding to each study
site (at the plot and fragment level), they
were  initially  obtained  for  the  state  of

Bahia,  and later, using the coordinates of
each site, the extraction of environmental
values was performed. For each point sam-
pled using the “raster::extract” function of
the  R  “raster”  package (Hijmans 2021)  in
each  raster  file  of  the  geospatial  covari-
ates, this information was then stored and
saved in a final matrix and used as predic-
tor variables in the model.

The biomass values used in the modeling
were submitted to exploratory analysis to
identify the presence of outliers and their
influence  on  the  regression  assumptions.
Multiple  linear  regression  analysis  was
used to adjust the model, and the parame-
ters  were  estimated  using  the  least
squares  method.  The  stepwise  technique
was used based on the Akaike Information
Criterion (AIC)  with  both directions in  or-
der to define which variables best explain
the  biomass  to  construct  a  multivariate
model.

The Shapiro-Wilk and Breusch-Pagan tests
were applied to verify if the model residu-
als  presented normality  and homoscedas-
ticity,  respectively.  In addition,  the model
was  submitted  to  the  Variance  Inflation
Factor (VIF) test to analyze possible corre-
lations between the explanatory variables
and ensure that the model is free of multi-
collinearity.

The  coefficient  of  determination  (R2),
Mean Absolute Error (MAE) and graphical
analysis of residuals were evaluated to test
the accuracy of the fitted model.  We also
used the scatter plot of the predicted val-
ues around the 1:1 line to observe the be-
havior  of  the  predictions  made  by  the
model. All analyzes were performed using
the  R  software  program  (R  Core  Team
2021).
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Fig. 3 -  Mapping by ordinary kriging of
the residuals of the regression model.

iF
or

es
t 

– 
B

io
ge

os
ci

en
ce

s 
an

d 
Fo

re
st

ry

https://www.worldclim.org/
http://earthenv.org/


Spatial distribution of AGB stock in tropical dry forest in Brazil

Spatialization of the biomass stock
The maps of the variables selected in the

multivariate model were designed for the
study area in raster format, with a spatial
resolution of 1 hectare (100 × 100 m). The
regression  model  was  applied  on  these
cells,  making  it  possible  to  estimate  the
biomass  stock  in  each  pixel  and  conse-
quently  generate a  global  predictive map
of  aboveground  biomass.  However,  this
map needs to be detailed in the regression
kriging procedure by adding a spatial distri-
bution map of the regression model residu-
als.

Next, an exploratory analysis of the data
was used to apply geostatistics on the res-
iduals in order to know  their distribution,
trends  and  identify  atypical  observations
(outliers).  This  preliminary  analysis  is  fun-
damental for decision making in geostatis-
tical procedures.

The classic estimator of  Matheron (1963)
was  used  to  calculate  the  experimental
semivariogram  of  the  residuals,  and  the
range was limited to half the maximum dis-
tance between two points. The behavior of
semivariograms  constructed  in  four  hori-
zontal directions was then verified to inves-
tigate  the  existence  of  anisotropy  in  the
residuals: 0°, 45°, 90° and 135° (Guedes et al.
2013).

The spherical, exponential,  and Gaussian
theoretical  models  were directly  fitted to
the  data  using  the  Maximum  Likelihood
method,  considering  the  stationarity  as-
sumption of the intrinsic hypothesis (Jour-
nel & Huijbregts 1978). This fitting method
estimates the parameters as a function of
the original data set and does not show de-
pendence  on  the  experimental  semivari-
ogram  points;  however,  it  requires  data
normality (Scolforo et al.  2016).  After the
fittings,  the  semivariogram  parameters
were  determined  and  the  ratio  between
the nugget effect and the threshold show-
ed the degree of spatial dependence, in ac-
cordance with Cambardella et al. (1994).

The  theoretical  model  for  the  interpola-
tion was selected by evaluating the Akaike
Information Criterion (AIC), the degree of
spatial dependence, the reduced mean er-
ror  (RME)  and  the  standard  deviation  of
the reduced mean error (SDRME) provided
by Jackknife cross-validation (Morais et al.
2017). The closer to zero the RME and the
closer to 1 the SDRME, the better the per-
formance of  the model.  Then the regres-
sion residuals  were interpolated from the
parameters  of  the selected spatial  model
by ordinary kriging, obtaining the residual
map  to  add  a  stochastic  aspect  to  the
global map of the biomass stock. This ap-
proach aims to improve the initial  quality
of  the  global  map  estimates,  which  may
present  trends  in  the  estimates  and  not
generate a sufficiently detailed spatial dis-
tribution of the biomass (Fig. 3).

The  predictive  kriging  quality  was  as-
sessed by the mean error (ME), mean stan-
dard error (MSE), and root mean squared
error (RMSE), which measure the accuracy

of estimates and are provided by cross-vali-
dation by the k-fold method in the package
“MASS” in R. Therefore, the final unbiased
map of the spatial distribution of biomass
was  obtained for  the  entire  Caatinga do-
main area in the state of Bahia by adding
the residual map to the global map using
map algebra tools.  The semivariogram fit-
ting was performed using the R software
program (R Core Team 2021), with the help
of the “geoR” package (Ribeiro Junior et
al.  2020)  and the  maps and interpolation
were prepared in the ArcGIS® software pro-
gram (ESRI 2019).

The prediction of biomass using the de-
terministic  interpolator was also perform-
ed  using  the  Inverse  Weighted  Distance
(IWD) with exponent 2,  a method known
as Inverse Squared Distance (ISD).  Neigh-
borhood  parameters  were  defined  for  a
minimum of 10 points and a maximum of
32 points,  which corresponds to the total
number  of  sampling  points  in  the  study
area.  Interpolation by ISD was performed
in  the  ArcGIS® software  program  (ESRI
2019).  Mapping  performance  was  evalu-
ated on visual  and statistical  criteria.  The
mean  error  (ME)  and  the  Root  Mean
Square Error (RMSE) were used for the sta-
tistical  evaluation.  The  ME  measured  the
prediction bias and its values must be close
to zero for unbiased predictions (Reis et al.
2020). Negative ME values suggest that the
prediction  technique  is  overestimating,
while positive values point to an underesti-
mation.

Results and discussion

Exploratory analysis
The  estimated  biomass  stock  values  in

the studied fragments ranged widely, from
2.85 to 80.88 Mg ha-1. There is similarity be-
tween the mean (25.17 Mg ha-1) and median
values (20.33 Mg ha-1), which points to an
approximately  symmetrical  data  distribu-
tion, but the superiority of the mean indi-
cates that the highest amounts of biomass
are further  from the center  compared to
the lowest stocks.  The marked difference
between the minimum and maximum val-
ues resulted in a high coefficient of varia-
tion (73.7%), reflecting the heterogeneity of
the study area. This variation portrays how
the conditions  of  the sampled fragments
are different. Different successional stages
and anthropization degrees occur in these
fragments, leading to variation in the num-
ber of individuals per hectare, in the rich-

ness and diversity of species, and in the di-
ameters and heights of the trees.

The average biomass found was similar to
that estimated by  Souza et al.  (2019) in a
protected area in Pernambuco (28.48 Mg
ha-1), and lower than a fragment in Sergipe,
which exhibited a contribution of 54.93 Mg
ha-1 (Oliveira 2016). Lima Júnior et al. (2014)
estimated values between 5.93 and 60.74
Mg ha-1 in Petrolina (PE), while Santos et al.
(2016) observed  a  smaller  range  in  Caicó
(RN) of between 10 and 17.8 Mg ha-1 of bio-
mass.  The  discrepancy  between  the  bio-
mass  stocks  observed  in  the  referenced
works  evidences  the  physiognomic  varia-
tion  that  occurs  along  fragments  of  the
Caatinga.

These differences in stocks between Caat-
inga  areas  are  associated  with  precipita-
tion,  irregular rainfall  distribution and the
successional stage of the forest, which pro-
mote variation in the species biomass accu-
mulation  and  distribution  (Lima  Júnior  et
al. 2014). Souza et al. (2019) confirmed that
the formation biomass is highly variable be-
cause it results from a combination of the
age  of  the  forest  fragment,  rainfall  and
species  richness.  The  authors  found  that
older forests exposed to greater precipita-
tion support a greater number of species
and  have  twice  the  biomass  when  com-
pared to successional and species-poor ar-
eas.

Modeling the biomass stock
We identified fragments with outliers for

biomass removed from the database used
for subsequent analyzes as they influenced
the regression assumptions. Thus, 27 frag-
ments were used for modeling and geosta-
tistical analysis.

The  parameters  used  in  the  regression
model showed significant coefficients (Tab.
2), which implies the importance of the se-
lected variables. The VIF test confirms the
absence of multicollinearity. The generated
model is parsimonious and retained three
variables,  which is  desirable as it  reduces
the  complexity  and  time spent  collecting
data and using the model.

The model presented a coefficient of de-
termination  (R2)  equal  to  46%  and  Mean
Absolute Error (MAE) of 5.9%,  which indi-
cated that the model performed well. The
MAE  demonstrates  the  model’s  ability  to
make  estimates  closer  to  the  real  ones
when  its  value  tends  to  zero  (Reis  et  al.
2020). The R2 demonstrates how much the
model is able to explain the observed data.
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Tab. 2 - Coefficients estimated by the regression model and Variance Inflation Factor
(VIF).

Parameter Variable Coefficient p-value (<0.05) VIF

b0 intercept 519.3 0.000346 -

b1 Elev -0.0000594 0.000293 1.70

b2 Temp 1.831 0.045831 1.18

b3 Prec -0.03326 0.016238 1.59
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The  value  found  herein  is  considered  ac-
ceptable given the magnitude of the study
area and the wide variation that occurs be-
tween  the biomass  stocks  of  the studied
fragments.  Similar  conditions  are  also  re-
ported by Scolforo et al. (2016), who found
R2 equal to 53% for a geographic model that
estimates the carbon stock in the state of
Minas Gerais.

The regression residuals follow a normal
distribution  (Shapiro-Wilk,  p-value  =  0.32)
and are homoscedastic (Breusch-Pagan, p-
value = 0.36). These characteristics are es-
sential to define the adequacy of the mod-
el and allow adopting the Maximum Likeli-
hood method in fitting the semivariogram,
which requires  a priori knowledge of  the
data  distribution  (Alvarenga  et  al.  2012).
The quality of the model can also be veri-
fied  in  Fig.  S1  (Supplementary  material).
The model presented randomly distributed
residuals and did not show significant devi-
ations from the mean or variance hetero-
geneity, suggesting that there were no un-
derestimation  or  overestimation  trends
(Fig.  S1a).  These  characteristics  configure
an estimation bias-free model. Fig. S1b illus-
trates the behavior of the estimated vs. the
observed  biomass.  The  closer  the  pre-
dicted values are to the 1:1 line, the better
the fit.  This  means there is  greater  preci-
sion,  less  chance  of  estimation  bias,  and
consequently the sum of residuals tends to
zero.

Elevation,  average  annual  temperature
and  average  annual  precipitation  are  the
main variables responsible for the variation
in the Caatinga biomass stock in the state
of Bahia (Fig. 4).  The contribution of pre-
cipitation is already consolidated in the lit-
erature  (Barni  et  al.  2016,  Poorter  et  al.
2016, Silveira et al. 2019, Souza et al. 2019).
The  availability  of  water  in  the  soil  in-
creases  the  photosynthetic  activity  of
plants,  influencing the seasonality  and in-
tensity of leaf production, and consequent
biomass production (Souza et al. 2019).

The prediction error associated with the
developed model may be due to the preci-

sion  degree  of  applying  the  allometric
equation used in this study, which presents
R2 equal to 92% (Sampaio & Silva 2005). The
error can also be attributed to the measur-
ing  process  of  the  trees  which  was  per-
formed on different occasions and by dif-
ferent teams.  The high variability  that oc-
curs  in  the  biomass  values,  which  pro-
moted  the  high  coefficient  of  variation,
also represents an additional difficulty for
fitting  the  multivariate  model.  This  was
also observed by  Mello et al.  (2013), who
reported losses in precision statistics when
modeling  rainfall  erosivity  for  the  North-
east region attributed to the high variabil-
ity of precipitation in this region.

Scolforo  et  al.  (2016) and  Silveira  et  al.
(2019) proved that environmental  compo-
nents can be highly explanatory variables
capable of estimating forest attributes. The
present study corroborates these authors
by identifying that there is a potential for
developing  models  capable  of  estimating
the biomass of the Caatinga vegetation us-
ing environmental variables. However, it is
necessary to improve these models, aiming
at increasing the accuracy of the estimate,
given that regression equations are always
associated with uncertainties (Scolforo et
al.  2016).  Studies  using  a  larger  sample
population are suggested, which will allow
construction  of  more  robust  equations
with fewer errors associated with the pre-
dictive capacity.

It should be noted that the accumulation
of  biomass  in  forests  does  not  only  re-
spond to the variables considered, but also
to other environmental conditions, such as
soil  fertility,  water  deficit,  seasonality  of
rainfall and successional stages (Poorter et
al. 2016, Souza et al. 2019). The use of vege-
tation indices and remote sensing data is
certainly  a  convincing option for  biomass
characterization and for developing regres-
sion models with lower degrees of uncer-
tainty.  Work  in  this  direction  has  already
been  developed  by  Lima  Júnior  et  al.
(2014),  Xue et  al.  (2017) who found good
performance in the fitted functions.

Spatialization of the biomass stock
The semi-variance calculated in  the four

directions  did  not  show  significant  differ-
ences and the semivariogram was consid-
ered  isotropic,  indicating  that  the  spatial
dependence  of  the  regression  residuals
only depends on the distance between the
points  and  is  the  same  in  all  directions
(Mello & Oliveira 2016).

The theoretical  semivariograms fitted to
the data by the Maximum Likelihood meth-
od are represented in Fig. S2 (Supplemen-
tary  material).  It  is  noteworthy  that  the
residuals had a normal distribution, which
legitimizes the use of this method (Reis et
al.  2020).  It  is possible to detect that the
residuals of the regression model are spa-
tially structured independent from the the-
oretical model.

Tab. 3 shows the parameters of the fitted
theoretical models and their respective de-
grees of spatial dependence of the residu-
als,  in  addition  to  the  statistical  criteria
used to define the best model. The spheri-
cal model presented the best fit to the re-
gression model residuals due to the lower
degree of spatial dependence and nugget
effect, lower AIC and reduced mean error
(RME) closer to zero.

We can see the smallest nugget effect as-
sociated  with  the  spherical  model  neces-
sary to provide more accurate estimates in
the  kriging  interpolation  in  Fig.  S2  (Al-
varenga et al. 2012). The nugget effect dif-
ferent from zero indicates that  there is a
random variation of the residual data that
cannot be explained by the spatial compo-
nent due to the lack of sampling in the dis-
tances  smaller  than the  smallest  distance
between  the  plots  (Scolforo  et  al.  2016).
The lowest average distance recorded for
the sampled fragments was 2447 meters.

The range found was 21,000 meters and
suggests  that  the  residuals  are  spatially
correlated  up  to  this  distance.  The  high
range  value  is  due  to  the  distances  be-
tween  the  sampled  fragments  and  the
magnitude of the study area. The relation-
ship  between  the  nugget  effect  and  the
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Fig. 4 - Variables selected by the multivariate regression model to estimate biomass in the Caatinga, Bahia.iF
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threshold expresses the degree of spatial
dependence of the variable, which is classi-
fied as strong (< 25%), moderate (25 to 75%)
and weak (> 75%),  according to  Cambard-
ella et al. (1994). All models showed a res-
idual  spatial  dependence  structure  from
strong to moderate, constituting desirable
indices in geostatistical modeling (Mello &
Oliveira 2016).

The ordinary kriging mapping of residuals
by the spherical model is shown in Fig. 3. It
is observed that closer points in space tend
to have similar values to each other, which
is the main feature revealed by geostatis-
tics  (Matheron  1963).  Mello  et  al.  (2013)
highlighted that the positive values of the
residuals represent underestimation of the
model,  while  the  negative  values  corre-
spond to overestimation. Thus, the authors
assure that a balanced distribution of these
estimates  is  desirable,  as  it  suggests that
there  are  no  trends  produced  by  the  re-
gression model. A balance between under-
and  overestimates  is  noticeable  on  the
map, showing that the model is suitable for
the study area.

The error metrics associated with the in-
terpolated surface in  the ordinary  kriging
of residuals are presented in Tab. 4 and re-
inforce that the spherical theoretical model
was  adequate  in  interpolating  residuals.
The  difference  found  between  the  RMSE
and ASE indicates that the forecast was un-
derestimated by 0.43 Mg ha-1 (Mello & Oliv-
eira 2016).

The combination of the regression model
estimates (Fig. 5a) and the kriging residuals
(Fig. 3) resulted in the final prediction map
of  the  biomass  stock  by  kriging  with  re-
gression (Fig. 5b). The global map and the
map corrected by the kriging of residuals
reveal  similar  behaviors  of  the  biomass
stocks;  however,  the greater  detail  given
by  the  final  map  is  remarkable.  The
biomass stock map interpolated from the
ISD technique is represented in Fig. 5c. It is
characteristic of this technique to preserve
the amplitude of the original data, so the
minimum  and  maximum  values  found  on
the map are those indicated in the descrip-
tive statistics of the data.

There  is  generally  an  increase  in  the
biomass stock in the north-south direction.
Biomass stocks below 20 Mg ha-1 occur in
the north of the study area due to lower
precipitation  rates  and  higher  tempera-
tures.  The region surrounding the munici-
pality of Euclides da Cunha is classified by
Ganem (2017) as a priority area for creating
an  integral  protection  conservation  unit
due to the urgency of habitat loss and sus-
ceptibility to environmental degradation.

A  small  area  near  the  municipality  of
Xique-Xique stood out for exhibiting higher
biomass values. The junction of the resid-
ual map shows the underestimation given
by the global map in this region, reinforc-
ing that the combination between a global
interpolator  and  a  geostatistician  better
represent the spatial distribution of a vari-
able.  The evident detail  given in this  spe-
cific area is due to the higher concentration
of fragments sampled there, which in turn
brought  the  regression  kriging  map  (Fig.
5b) closer to the real stock in this region. In
addition, a biomass gradient is observed in
the mapping generated by kriging with re-
gression  which  increases  in  the  north-
south  direction.  However,  as  this  tech-
nique  is  dependent  on  the closest  neigh-
borhood points, the map did not detail the
biomass  for  the  subsampled  regions  and
promoted the formation of islands around
the sampled fragments.

The interpolated surface presented mean
error (ME) values of -0.38, which suggests
an  overestimation  of  the  biomass  stock
prediction  by  the  ISD.  The  ME  measures
the model’s tendency to under or overesti-

mate a variable of interest and should be
close to zero for unbiased predictions (Reis
et al.  2020). The Root Mean Square Error
(RMSE)  was  19.83  Mg  ha-1.  Although  this
type  of  interpolation  is  useful  in  the  ab-
sence of spatial structure of the variable of
interest, or even in the presence of weak
dependence structure, the use of the ISD
was relevant because it showed that the in-
consistency in the mapping by kriging with
regression was influenced by the subsam-
pling in the study area.

Small  isolated areas  with  smaller  stocks
can be observed in the south-central por-
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Tab. 3 - Statistical parameters and criteria of the theoretical models adjusted for the
residuals of the regression model. (C0): nugget effect; (C1): threshold; (A): range; (GD):
degree of spatial dependence; (EMR): mean reduced error (SER): standard deviation of
reduced errors (AIC): Akaike Information Criterion.

Model C0 C1 A (m) GD (%) EMR SER AIC

Exponential 11.75 49.00 21000 23.90 0.018 1.001 187.3

Gaussian 13.69 48.12 21000 28.45 0.020 1.002 186.3

Spherical 5.06 45.45 21000 11.14 0.016 0.992 185.4

Tab. 4 - Statistics of the interpolation by
ordinary kriging of the residuals of the
regression  model.  (ME):  Mean  Error;
(MSE):  Mean Standardized Error;  (RM-
SSE): Root Mean Square Error Standard-
ized; (RMSE): Root Mean Square Error;
(ASE):  Mean  Standard  Error.  For  the
semivariogram model to be suitable for
interpolation,  ME  and  MSE  must  be
close to  0; the RMSSE should be close
to  1  e;  the  RMSE  and  the  ASE  should
have similar values and the smallest pos-
sible (Mello & Oliveira 2016).

Statistics Value

ME -0.16

MSE 0.01

RMSSE 0.97

RMSE 6.39

ASE 6.82
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Fig. 5 - Global map of biomass stock obtained by the regression model (A), interpolated by kriging with regression - RK (B) and inter -
polated by the Inverse Square of Distance technique - IQD (C).
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tion of the map where biomass stocks are
greater than 25 Mg ha-1, which constitutes
an effect of the low estimated biomass in
the fragments sampled there.  This  shows
that  these fragments  do not  capture the
real variation of biomass stock that occurs
in the study area and reinforces that  the
underestimation  of  the  Chapada  Diaman-
tina represented in the regression kriging
map  is  due  to  the  effect  of  these  frag-
ments.  Despite this,  in visually  comparing
the maps it is notable that the regression
kriging is able to capture more specific de-
tails regarding the biomass distribution in
the studied area than the ISD, which makes
it more efficient in the mapping.

The  largest  biomass  stocks  are  in  the
south of the map. The biomass in the mu-
nicipality of Contendas do Sincorá was esti-
mated  at  37  Mg ha-1,  while  Virgens  et  al.
(2016) estimated an average value of 29.2
Mg ha-1. The authors classify the predomi-
nant  vegetation  in  this  area  as  arboreal
Caatinga and in a late successional stage.
Considering that these authors used the di-
rect quantification method which is  more
accurate,  it  is  stated that  the  biomass  in
the  present  study  was  slightly  overesti-
mated in this region.

The  highest  biomass  stocks  indicated in
southern Bahia suggest that these are po-
tential  areas in the Caatinga to store car-
bon. Considering that the carbon contents
in  the  biomass  are  generally  around  50%
(IPCC 2006), the forest carbon stock gradi-
ent in the area tends to be similar to that
presented in Fig. 5b.

Low biomass values were found for the
Chapada Diamantina region, where the mu-
nicipalities  of  Morro do  Chapéu and  Len-
çóis  are  located.  Chapada  Diamantina  is
characterized  by  a  set  of  mountains  that
reach more than 1000 meters in elevation,
with  high  precipitation  levels  and  milder
temperatures  (Fig.  4),  constituting  favor-
able  conditions  for  forest  productivity
(Souza et al. 2019). Thus, this area tends to
have  larger  trees,  sustain  denser  forests
and  consequently  store  high  stocks  of
plant  biomass,  as  evidenced  by  the  bio-
mass  mapping  throughout  the  Caatinga
carried out by Castanho et al. (2020) using
satellite images. The authors estimated val-
ues  higher  than 60 Mg ha-1 in  this  region
and classified it  as  one of  the areas  with
the  highest  plant  biomass  in  the  entire
Caatinga.

However, this region does not support a
homogeneity  of  dense  vegetation.  Cha-
pada  Diamantina  is  a  set  of  communities
which  form  a  mosaic  rich  in  physiogno-
mies,  depending  on  the  topography,  na-
ture  and  depth  of  the  soil.  The  high  alti-
tudes and busy relief result in a high ero-
sion and occupation rate  of  the areas  by
rocky outcrops, which is limiting to vegeta-
tion development, with formations having
different physiognomies from the general
dominant context of this region occurring
in these soils (Benites et al. 2003).

Therefore, it is likely that the low biomass

values in this area on the map (Fig. 5b) are
due  to  fragments  sampled  under  these
conditions.  A  higher  sampling  intensity
over  denser  forest  areas  would  allow  re-
gression kriging to  more  adequately  esti-
mate the spatial  behavior of the biomass
stock  in  Chapada  Diamantina,  respecting
its different physiognomies. Thus, the con-
clusions  about  the  spatial  distribution  of
the  biomass  stock  in  the  study  area  are
moderate, recognizing that the database is
limited in  the number  and distribution  of
fragments.

However,  lower  mapping  accuracy  was
expected due to the richness  of  physiog-
nomies of the Caatinga in Bahia, as charac-
terizing the biomass in heterogeneous en-
vironments  such  as  tropical  forests  is  a
challenge (Silveira et al. 2019). But the re-
sult was satisfactory considering the data-
base and the richness of detail achieved in
the final regression kriging map.

There is  no consolidated database avail-
able  which  covers  the  entire  territory  of
the state of Bahia, which validates the data
compiled  in  this  study.  Although  not  as
consistent, the data provide the potential
for biomass in each patch. A base of inven-
tories capable of capturing the entire spec-
trum of vegetation variation in Bahia and
showing  its  plurality  of  biomes,  succes-
sional  stages,  anthropization degrees and
phytophysiognomies is necessary. The exis-
tence of  a  consistent  basis  would  enable
developing techniques and studies capable
of  supporting  the  conservation  and  sus-
tainable exploitation of  the state’s  forest
resources with greater precision.

This  information  would  provide  greater
detail in the final map in the present study
and would promote a substantial improve-
ment in mapping.  Silveira et al. (2019) and
Scolforo et al. (2016) achieved satisfactory
results when mapping the spatial distribu-
tion of biomass and carbon stock, respec-
tively, by regression kriging for the state of
Minas  Gerais,  and close  to  what  was  ob-
served in the field. However, both authors
used a robust database with greater sam-
pling  intensity  and  well-distributed  forest
fragments in the study area.

Due to the heterogeneity of the Caatinga
vegetation in Bahia, it is suggested to con-
sider  the  different  phytophysiognomies,
ecoregions or climatic zones of the biome
as  independent  variables  in  the  biomass
modeling in future works.  This  distinction
has been used to reduce the spatial varia-
tion common in vegetation data over large
areas (Barni et al. 2016, Scolforo et al. 2016,
Silveira et al. 2019).  Barni et al. (2016) con-
sidered the different phytophysiognomies
that  occur  in  the  state  of  Roraima when
modeling the biomass for the state, classi-
fying  them  into  four  forest  groups  that
were used as input variables in the regres-
sion  model.  With  this,  the  authors  man-
aged to improve the performance in the in-
terpolation, as the model was able to bet-
ter capture the vegetation variations, and
thus  generate  a  better  representation  of

the biomass stocks in the state.
Similarly, Scolforo et al. (2016) considered

the different biomes that occur throughout
the  state  of  Minas  Gerais  and  included
them as a categorical variable in the regres-
sion model  used  to  spatialize  the  carbon
stock in the state. The authors obtained a
consistent,  more  flexible  model  that  ade-
quately  estimated the spatial  behavior  of
carbon, with a reduction of possible trends
in specific areas.

Study limitations
Our  analysis  explored  a  variety  of  data

sources and analytical tools that can be ap-
plied  to  develop  predictive  maps  that  in-
corporate the observed spatial  pattern of
biomass in landscapes at the scale of the
Caatinga biome in the state of Bahia. How-
ever,  the  context  of  available  data  still
lacks more excellent coverage or prescrip-
tion for some areas, therefore some limita-
tions remain.

Firstly, it is common to face problems us-
ing  inventory  data collected differently  in
each location, mainly associated with taxo-
nomically  reliable  data  and  correctly  de-
fined  technical  protocols  in  a  given  loca-
tion. As a result, some trees may be mea-
sured  differently,  and  individual  biomass
estimates  may  show  under-  or  over-esti-
mate trends. For example, many local,  re-
gional, and pan-tropical equations use the
diameter  at  1.30  m ground  level  (dbh)  in
biomass  estimates,  and  many  inventories
only  have  a  diameter  at  0.30  m  ground
level (diameter at base). Furthermore, not
all  Caatinga forest  fragments  or  land use
forms can be equally represented, leading
to  high  standard  deviations  or  region-bi-
ased biomass estimates. Although the loca-
tions were spatially well distributed for the
Caatinga  biome  in  Bahia,  and  some loca-
tions  were  close to each other,  an  effort
was made to correct and standardize den-
drometric  measurements  in  specialized
protocols and to use forest land-use maps
at a scale of finer detail. The analysis of the
biomass stocks discussed is also based on
accurate  classifications  of  land cover  and
markedly  anthropized  gradients,  which
may not be available or may be misaligned
with  the  inventoried  plots.  This  helps  to
correct  errors  about  the  representative-
ness and potential distribution of biomass
at the plot level and the biome scale.

Second, different scales of environmental
data (10 × 10 km tables) and inventory form
another  complication,  as plots covering a
few hectares are unlikely to represent an
area of 10 × 10 km (Slik et al. 2009). In addi-
tion,  some  regions  or  areas  contained
more inventoried trees, plots, or surveyed
surface area than others, resulting in differ-
ent levels of captured biomass stock by the
site.  Although  attempts  have  been  made
to  correct  the  diversity  values  for  these
sampling biases,  likely,  they have at  least
partially  influenced  the  results.  Ideally,
meta-analyses like this should be perform-
ed on standardized plot layouts in combi-
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nation with high-resolution environmental
data (Gerstner et al. 2017). Unfortunately,
such an approach is still  complex to carry
out  in  more  remote  dry  tropical  areas  in
northeastern  Brazil,  where  reliable  inven-
tory  data  is  already  a  problem  (Forest-
Plot.net 2021), not to mention reliable high-
resolution data on soils and climate (Fick &
Hijmans 2017, Hengl et al. 2017).

Thirdly, and related to the available envi-
ronmental layers and their potential to ex-
plain the biomass in Caatinga vegetation, it
was noted that the functional importance
of many environmental variables suggests
poor results among all the variables tested
based on characteristics related to predic-
tive importance. The high collinearity may
help  to  explain  this  fact;  however,  other
modeling approaches, as well as other en-
vironmental  variables,  should  be  tested,
mainly related to the soil of the biome. For
example,  edaphic  factors  are  vital  in  ex-
plaining  many  attributes  and  ecological
patterns  of  the  forest,  mainly  related  to
productivity  and  diversity  in  tropical  for-
ests (Souza et al. 2019). In addition, the low
predictive values obtained for the other cli-
matic  variables  may  be  explained  by  the
available  GIS layers  in  which the spatially
explicit grid (interpolated values) does not
correctly explain the inherent values at the
plot level, requiring, therefore, an effort of
data collection at local scales. Detailed in-
vestigation of  these factors  locally  would
be critical, as it could identify other ecolog-
ical functions of the edaphoclimatic infor-
mation set for potential biomass at a more
detailed  scale  in  the  Caatinga  biome  of
Bahia.  However,  the results  obtained cor-
roborate with studies of the same tropical
geographic  regions  (Saatchi  et  al.  2011)
with highly varied species composition (De
Queiroz  et  al.  2017),  which  leads  to  the
main conclusion being satisfactory. Finally,
more direct studies on the set of ecological
forces  acting  to  define tree  biomass  pat-
terns are needed to clarify these answers.

Conclusions
We integrate  in  situ tree  measurements

and remote  sensing data to map the po-
tential  distribution  of  biomass  in  the
Caatinga biome of Bahia with detailed spa-
tial  resolution.  We primarily  use free  and
open access data; therefore, our approach
can be adopted and improved in other re-
gions to assess total biomass stocks. While
ecologists have an ever-expanding toolbox
for  extrapolating  from  local  surveys  to
larger-scale  patterns,  it  has long been as-
sumed that the well-known barriers to reli-
able  tree-level  sampling  and  non-destruc-
tive  estimates  make sense  extrapolations
across  the  entire  spectrum  impossible  in
the Caatinga domain in the state of Bahia.
Our  methods  enrich  the  information  al-
ready  available  on  biomass  stocks  at  re-
gional and global scales, as well as gener-
ate  new  perspectives  for  understanding
and conserving tropical dry forests.

The quality of the regression model sug-

gests  that  three  main  environmental  fac-
tors  possibly  govern  aboveground  bio-
mass.  Increases  in  temperature  and  alti-
tude suggest a reduction in biomass. How-
ever,  the  combination  of  average  annual
precipitation and moderate altitude condi-
tions  is  the  ideal  climate  to  support  the
highest biomass stocks. Additional studies
with a larger sample population and other
variables  can  improve  the  model.  Com-
pared to ISD, regression kriging revealed in
more  detail  the  spatial  variability  of  bio-
mass. The adoption of a higher sampling in-
tensity has the potential to maximize this
detail  given  by  the  technique.  A  robust
base  of  forest  inventories  is  needed  for
Bahia in order to enable studies that allow
for a more accurate understanding of the
potential of the state’s forest resources.

Finally, we mapped the potential biomass
distribution of the Caatinga biome in Bahia,
but we do not guarantee that the conser-
vation  or  preservation  of  these  is  estab-
lished. The overwhelming effect of human
activities (deforestation, fires, and the ad-
vance of agriculture and livestock) has led
to  substantial  reductions  in  biomass  and
carbon  stocks.  Given  the  enormous  car-
bon-storage  capacity  of  tropical  dry  for-
ests,  the  next  avenue  for  research  is  to
model the effects of climate change and fu-
ture land-use changes on biomass patterns
to  refine  conservation  prospects  in  a
changing world. These efforts are urgently
needed in light of the constant and increas-
ing rates of deforestation in the Caatinga
biome  in  recent  years  and  potentially
threaten the planet’s high biodiversity hot-
spots.
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