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Assessing the influence of different Synthetic Aperture Radar 
parameters and Digital Elevation Model layers combined with optical 
data on the identification of argan forest in Essaouira region, Morocco
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Aicha Moumni, 
Abderrahman Lahrouni

Forest resource conservation necessitates a deeper understanding of forest 
ecosystem  processes  and  how  future  management  decisions  and  climate 
change may affect these processes. Argania spinosa (L.) Skeels is one of the 
most popular species in Morocco. Despite its ability to survive under harsh 
drought, it is endangered due to soil land removal and a lack of natural regen-
eration. Remote sensing offers a powerful  resource for mapping, assessing, 
and  monitoring  the  forest  tree  species  at  high  spatio-temporal  resolution. 
Multi-spectral Sentinel-2 and Synthetic Aperture Radar (SAR) time series com-
bined with Digital Elevation Model (DEM) over the Argan forest in Essaouira 
province, Morocco, were subjected to pixel-based machine learning classifica-
tion and analysis. We investigated the influence of different SAR data parame-
ters and DEM layers on the performance of machine learning algorithms. In ad-
dition, we evaluated the synergistic effects of integrating remote sensing data, 
including optical, SAR, and DEM data, for identifying argan trees in the Smimou 
area. We collected data from Sentinel-2, Sentinel-1, SRTM DEM, and ground 
truth sources to achieve our goal. Testing different SAR parameters and inte-
grating DEM layers  of  different resolutions with other remote sensing data 
showed that the Lee Sigma filter with a size of 11×11 and a DEM layer of 30 m 
resolution gave the best results using the Support Vector Machine algorithm. 
Significant improvements in overall accuracy (OA) and kappa index (K) were 
observed in the following phase. After applying a smoothing technique, the 
combined use of two Sentinel constellation products improved map accuracy 
and quality. For the best scenario (VV+NDVI), the OA was 88.32% (K = 0.85),  
while for scenarios NDVI+DEM and VH+NDVI+DEM, the OAs were 93.25% (K = 
0.91) and 93.01% (K = 0.91), respectively. Integrating a DEM layer with SAR 
and optical data has significantly improved the accuracy in the classification of 
vegetation types, especially in our study area which is characterized by high 
environmental heterogeneity.

Keywords:  Argan  Forest,  Sentinel-2,  GLCM  Texture,  SAR  Parameters,  DEM, 
Satellite Image Classification

Introduction
Forests  represent  biodiversity  hotspots 

and play  a  crucial  role  in  maintaining the 
ecological balance and the overall well-be-
ing of the planet (Barakat et al. 2018). For-
est  cover  is  essential  for  global  biodiver-
sity, land use dynamics, and various socio-
economic aspects in arid and semi-arid en-
vironments.  They  provide  resources  such 
as food and fibre, regulate the hydrological 
cycle,  and  protect  watersheds  and  their 
vegetation,  water  distribution,  and  other 
ecological and human services vital to local 
populations. Forests also contribute to the 
conservation of many species of plants and 
animals.  However, due to natural and hu-
man factors, the inherent balance of eco-
system  services  provided  by  our  forests 
has experienced a significant decline (Mo-
hajane et al.  2017). The arid and semi-arid 
region stretching from southwest to south-
east Morocco is home to the forest argan 
tree (Argania spinosa [L.] Skeels), which be-
longs to the Sapotaceae family. This vege-

tation type, also known as arganeraie, cov-
ered about  952,200 ha  and has  been de-
clared by UNESCO MAB (Man and the Bio-
sphere Reserve) as a biosphere reserve in 
1998. It constitutes the third most popular 
wood  species  in  Morocco,  following  the 
sandarac  gum  (Tetraclinis  articulata)  and 
evergreen oak (Quercus ilex – Khallouki et 
al.  2015),  which  have  a  taproot  reaching 
soil horizons faster (Ali et al. 2021). The ar-
gan tree is  characterized by slow growth 
and a spiny, shrubby structure and has a re-
markable lifespan of over 200 years. Due to 
its ecological and physiological properties, 
A.  spinosa plays  an  essential  role  in  the 
fight  against  desertification  and  drought 
(Benmahioul et al. 2006). Moreover, it has 
enormous interest at different levels (eco-
nomic, medicinal,  biological,  phylogenetic, 
ecological, biodiversity) and it is utilized in 
cosmetics  as  a  revitalizing  agent  for  the 
skin  and  the  hair  (Faouzi  et  al.  2015).  In-
deed,  it  is  a  multipurpose  species,  each 
part  or  production of  the tree is  popular 
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(wood, leaves, fruits, oils) and represents a 
source of income for land owners. Despite 
the different roles played by this species, 
more than half of the argan forest of Mo-
rocco  has  disappeared  (mainly  on  the 
plains), and the threat posed by its deple-
tion  is  currently  a  significant  concern 
among the population and scientists.  The 
cumulative effects of overgrazing, arid cli-
mate,  poor  natural  regeneration,  and  an-
thropomorphic impacts have exacerbated 
the decline in tree cover and density. In ad-
dition,  the  overexploitation  of  the  argan 
tree is  irrational,  especially  given the cur-
rent high demand for argan oil on the inter-
national market (Sinsin et al. 2020), and cli-
mate change, combined with the rarity of 
natural  regeneration,  has led to a regres-
sion of its range area (Said Ali et al. 2022).

Creating land cover maps through satel-
lite  image  data  and  employing  machine 
learning techniques represent two promi-
nent  and  contrasting  applications  within 
remote sensing (Koskela  et  al.  2014).  Re-
mote sensing enables land dynamics to be 
observed,  identified,  mapped,  assessed, 
and monitored at various spatial and tem-
poral  resolutions.  The increasing availabil-
ity of Earth observation data and techno-
logical  improvements  in  processing  capa-
bility are driving the advancement of sens-
ing as a  robust  and consistent methodol-
ogy.  Remote sensing offers  the  flexibility 
to monitor agricultural areas in the transi-
tion from bare ground at the beginning of 
the season to densely vegetated areas dur-
ing  their  maximum  growth  (Shahtahmas-
sebi  et  al.  2021).  Through freely  available 
satellite  imagery  (MODIS,  Landsat,  Senti-
nel),  remote  sensing  has  become  one  of 
the  most  powerful  and  valuable  instru-
ments for investigating global phenomena 
such as global warming (Martinez Del Cas-
tillo et al.  2015).  Optical (passive sensors) 
and Synthetic Aperture Radar (active sen-
sors) provide valuable geospatial informa-
tion to identify tree species by using classi-
fication methods on remotely sensed data 
(Moumni et al. 2021). 

The use of optical remote sensing for for-
est type mapping is well established in the 
literature for  such data.  The classification 
of forest types is based on reflected spec-
tral data recorded by optical sensors (Yu et 
al. 2018). However, there are some factors, 
such as the existence of many features or 
complex land cover within the same pixel 
or  the  presence  of  comparable  classes 
(tree species) in the study region, that can 
produce  spectral  confusion,  leading  to  a 
poor  separation  between  different  cover 
types  (Fisher  et  al.  2017).  On  the  other 
hand, SAR remote sensing without a com-
bination of optical sensors is not suited to 
this  context.  Nevertheless,  SAR  data  are 
helpful in combination with other remote 
sensing products.  Numerous studies have 
shown that, combined with optical remote 
sensing, it can improve classification qual-
ity as the information extracted from SAR 
images can easily distinguish between for-
est and non-forest types (Moumni & Lah-
rouni 2021). For example,  Qin et al. (2015) 
proved the feasibility of combining PALSAR 
and MODIS photos to map forests across 
broad  areas.  In  addition,  Su  et  al.  (2016) 
showed promising findings in the ideal mix 
of  predictors  and  algorithms  for  forest 
above-ground biomass mapping. The Shut-
tle Radar Topography Mission (SRTM) digi-
tal  elevation  model  (DEM)  was  globally 
consistent and freely  available to provide 
topographic  indices  useful  for  forest  bio-
mass estimation. Numerous studies proved 
that integrating Sentinel-2,  Sentinel-1,  and 
SRTM datasets (S2, S1, and DEM) give the 
best  overall  accuracy  (Amoakoh  et  al. 
2021).

In  this  context,  we  accurately  mapped 
the  geographical  distribution  of  argan 
trees  and  established  a  distinction  be-
tween  this  indigenous  species  and  other 
tree  varieties  within  the  Smimou  region. 
Our efforts encompass a range of method-
ologies  involving  machine  learning  algo-
rithms, all aimed at identifying the optimal 
approach to achieve the highest classifica-
tion accuracy. One such study authored by 

Sebbar et al.  (2022) focused on the accu-
rate mapping and precise localization of ar-
gan trees in the Smimou region. To achieve 
this,  optical  data  from Sentinel-2  imagery 
was used and a dual classification process 
was performed to overcome the separabil-
ity challenges. The Support Vector Machine 
(SVM) classifier and the Decision Tree algo-
rithm were employed to accurately identify 
and distinguish argan trees from other veg-
etative  elements  in  the  area.  Further, 
Moumni et al.  (2021) assessed the impact 
of  fusing  two  types  of  remote  sensing 
data, optical imagery (Sentinel-2) and Syn-
thetic Aperture Radar (SAR) imagery (Sen-
tinel-1),  in  mapping argan trees in  the re-
gion, to improve and compare the classifi-
cation  results  with  those  obtained  from 
single  source  data  using  the  SVM  algo-
rithm. A subsequent study by El Moussaoui 
et al.  (2021) focused on assessing  the po-
tential  of  integrating the Digital  Elevation 
Model (DEM) layer with multi-sensor data 
(Sentinel-1  and Sentinel-2)  to detect,  map 
and identify argan trees from other forest 
species using various machine learning al-
gorithms such as Support Vector Machine 
(SVM), Maximum Likelihood (ML) and Arti-
ficial Neural Networks (ANN). Interestingly, 
these studies used a standard parameteri-
zation for classification, including the type 
of filters in the SAR images, the resolution 
of the DEM layer, and the texture parame-
ters. 

The main objective of this study is to eval-
uate the influence of different SAR parame-
ters,  including filter  type and texture,  on 
the  classification  results.  In  addition,  we 
aim to evaluate the effect of the DEM reso-
lution in combination with remote sensing 
data in identifying argan forests in the Smi-
mou area, western Morocco. We employed 
classifications  derived  from  optical  NDVI 
time series and SAR time series integrated 
with  the  DEM  layer  to  distinguish  argan 
trees  from  other  tree  species,  like  olive 
(Olea  europaea L.)  and  sandarac  gum. 
Among the various algorithms tested, the 
SVM classifier was most successful  in dis-
tinguishing argan trees from other vegeta-
tion types. To achieve the above goals the 
following steps were conducted: (i) deter-
mining the best filter type using the com-
bined SAR products in terms of overall ac-
curacy; (ii) assessing how the texture fea-
tures based on the GLCM affect the classifi-
cation results; (iii) examining how the vary-
ing  resolutions  of  DEM  layers  affect  the 
classification accuracy.

Materials and methods

Study area and reference data
The study site is an area of approximately 

20 km2 around a small town known as Smi-
mou,  located  in  the  Essaouira  province, 
south-eastern  part  of  the  Marrakech-Safi 
region in central Morocco (El Moussaoui et 
al.  2021,  Moumni et al.  2021 – Fig. 1).  The 
mountain range covers much of this area, 
where  the  Jbel  Amsittene  is  the  highest 

101 iForest 17: 100-108

Fig. 1 – The loca-
tion of the study 

area. (DEM): digi-
tal elevation 

model.
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Mapping argan forest in Morocco using SAR and optical data

peak of the province (912 m a.s.l.). The Smi-
mou  area  is  characterized  by  an  arid  to 
semiarid climate, where summers are short 
and hot, and winters cold and rainy. Over 
the year, the temperature generally ranges 
from 8 to 26 °C  and is  rarely  below 5 or 
above 31 °C (https://fr.weatherspark.com). 
Forests cover about 38% of the total Com-
mune  area,  and  the  land  cover  is  domi-
nated by two main tree species: the Argan 
(Argania spinosa) and Sandarac gum (Tetra-
clinis articulata) in the upper parts (Genin & 
Simenel 2011). The main activity of the in-
habitants is agriculture, which is slowly de-
veloping due to the difficult environmental 
conditions (lack of rainfall  and groundwa-
ter).  The  production  system  is  based  on 
forestry  (argan  and  Sandarac  gum),  bee-
keeping,  goat,  cattle,  and  cereal  farming 
(barley, wheat, and corn).

Field data
During 2019, detailed information on land 

cover and land use were collected by visit-
ing 574 sampling sites in collaboration with 
the local Forestry Research Center of Mar-
rakesh  (Centre  de  Recherche  Forestière). 
The reference data were the same used in 
El Moussaoui et al. (2021) and  Moumni et 
al. (2021).  Fig. 2 shows the spatial distribu-
tion  of  the  surveyed  parcels  divided  into 
two groups (training and validation).

Methodology
The  methodological  approach  followed 

consists  of  four  main  steps  (Fig.  3):  (i) 
downloading Sentinel-1, Sentinel-2 imagery 
and  DEM  layers  and  acquiring  the  field 
data; (ii) data preprocessing; (iii) SVM clas-
sification;  (iv)  accuracy  assessment,  com-
parison, and analysis; (v) downloading the 
imagery SAR, S-2, DEM layers and acquiring 
the field data.

Remote sensing data
The  optical  and  radar  data  used  come 

from the two satellites, Sentinel-2 and Sen-
tinel-1,  respectively.  The  choice  of  these 
two  sensors  is  mainly  influenced  by  the 
free availability of their products, as well as 
their optimal spatial- and temporal resolu-
tions.

Optical imagery
We  used  36  Sentinel-2  images  down-

loaded  from  the  Theia-CNES  website 
(https://peps.cnes.fr/), covering the period 
from  December  2018  to  December  2019. 
These images were distributed across the 
four seasons and processed to derive the 
NDVI  vegetation index.  Further  details  of 
the  optical  imagery  can  be  found  in 
Moumni et al. (2021).

Synthetic Aperture Radar Imagery
Sentinel-1  images  are  ortho-rectified  on 

the Sentinel-2 grid to facilitate the joint use 
of  the two missions.  This  product named 
“S1Tiling” has been developed within the 
CNES  SAR  service,  in  collaboration  with 
CESBIO (Potin et al. 2018). Sentinel-1 offers 

four modes of data acquisition: Strip Map 
(SM), Interferometric Wide Swath (IW), Ex-
tra Wide Swath (EW), and Wave (WV). In 
the present study, 26 SAR images covering 
the  year  2019  were  collected  from  Peps 
CNES website  (https://peps.cnes.fr/)  using 
the IW swath mode with double polariza-
tion (VV and VH).

Digital Elevation Model (DEM) layers
The  Shuttle  Radar  Topography  Mission 

(SRTM) is  a  combined mission of  the Na-
tional  Imagery  and  Mapping  Agency 
(NIMA)  and  National  Aeronautics  and 
Space  Administration  (NASA)  to  acquire 
global  elevation datasets.  The SRTM pro-
vided  digital  elevation  data  (DEMs)  for 
more than 80% of the world. The Digital El-
evation Model (DEM) is a numerical repre-
sentation  of  the  Earth  surface  that  pro-
vides  fundamental  information about  ter-
rain relief. SRTM data, with a resolution of 
10 m, is accessible for the contiguous USA 
(Furze et al. 2017). Additionally, SRTM data 

with resolutions of 12.5, 30, and 90 m are 
freely  available  for  the  entire  globe,  and 
can be downloaded from sources such as 
the  Alaska  Satellite  Facility  (ASF)  Data 
Search and the USGS Earth Explorer web-
site. In this study, we are specifically inter-
ested in investigating the impact of differ-
ent DEM data on the overall accuracy and 
the Kappa index, which serve as key indica-
tors of classification performance. For this 
reason, three available imagery Digital Ele-
vation Model (DEM), at 12.5, 30, and 90 m 
spatial  resolution covering our study area 
were  acquired  from  the  ASF  (https:// 
search.asf.alaska.edu), and the USGS Earth 
Explorer (http://earthexplorer.usgs.gov).

Data preprocessing
The  Sentinel-1  data  were  pre-processed 

using  the  Sentinel-1  toolbox  in  the  SNAP 
software and ENVI v. 5.1.  The preprocess-
ing steps included thermal noise removal, 
radiometric  calibration;  georeferencing 
was performed by Range Doppler Terrain 
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Fig. 2 - Spatial distribution of 
calibration and validation sam-
ple sites across the study area.

Fig. 3 - Preprocessing and process workflows conducted in the present study. (DEM 
12.5 m), (DEM 30 m), (DEM 90 m): digital elevation model with a resolution of 12.5, 30,  
and 90 meters, respectively.
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Correction using a  30  m Digital  Elevation 
Model (SRTM DEM – Inglada et al. 2016).

To improve image readability, speckle fil-
tering techniques were applied to reduce 
noise  in  the  radar  image.  Several  filters 
available in SNAP were considered, includ-
ing  Lee,  Enhanced  Lee  (3  ×  3  and  5  ×  5 
sizes), Frost, Gamma Map, Boxcar, IDAN4, 
Median, and Lee Sigma, which was tested 
with different window sizes, including 5 × 
5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, and 17 ×  
17, with different parameterisations to de-
termine  the  most  effective  configuration. 
All these filters were examined in order to 
select the best one for the next step. The 
filtered images were converted to a loga-
rithmic scale with the unit of Decibel (dB) 
(El  Moussaoui  et  al.  2021,  Moumni  et  al. 
2021).

Texture  analysis  was  conducted  to  cap-
ture spatial relationships between the two 
pixels  separated  by  a  certain  distance  in 
the image and neighbouring pixel informa-
tion  (Caballero  et  al.  2020,  Zhang  et  al. 
2017) The gray level  co-occurrence matrix 
(GLCM) suggested by Rajadell et al. (2009) 
is one of the most popular methods for cal-
culating  second-order  texture  measures. 
The GLCM is defined as follows: Each ele-
ment (i,  j) in the GLCM represents the fre-
quency  of  two  pixels  in  a  particular  win-
dow,  with  grayscale  values  i and  j and  a 
neighbouring distance of  d in the θ direc-
tion. Typically,  d assumes values of 1 or 2, 
and θ takes the four directions of (0°, 45°, 
90°, and 135°). The GLCM texture measures 
were computed for double polar (VV, VH) 
using a 9 × 9 moving window, encompass-
ing all directions and a co-occurrence shift 
of  one  pixel  (interdigital  distance)  using 
SNAP. Generally, eight parameters derived 
from the GLCM were considered for quan-
titative texture description: (i) Angular Sec-
ond  Moment  (ASM);  (ii)  Homogeneity 
(HOM); (iii) Contrast (CON); (iv) Dissimilar-
ity (DIS); (v) Correlation (COR); (vi) Entropy 
(ENT); (vii) Variance (VAR); (viii) Mean.

Each parameter captures specific textural 
characteristics  within  the  image  and  was 
calculated as follows (eqn. 1 – eqn. 8):

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

where P(i,  j) is the normalized value of the 
gray-scale at positions i and j of the kernel 
with a sum equal to 1, while  N is the num-
ber of gray levels in the quantized image. 
The μ is the mean for the variance texture 
measurement,  where  the  terms  (μx,  μy), 
and (σx, σy) are the means and standard de-
viations  of  Pi and  Pj respectively,  for  the 
correlation texture measure (Tavares et al. 
2019).

SVM classification and accuracy 
assessment

After preprocessing, the data was ready 
for classification.  Support Vector Machine 
(SVM) classification was used in this step 
to categorize different land cover or vege-
tation  types  based  on  the  available  data 
layers (El Moussaoui et al. 2021, Moumni et 
al. 2021, Sebbar et al. 2022).

The  accuracy  evaluation  was  conducted 
by analyzing a generated confusion matrix, 
revealing the correlation between the clas-
sification outcomes and the validation data 
derived from the ground truth. Within this 
matrix,  the  diagonal  cells  represent  the 
count of accurately identified pixels. Calcu-
lating the sum of these pixels and dividing 
it by the total pixel count provides the per-
centage  accuracy  or  overall  classification 
accuracy (OA).

The Kappa coefficient (K) is another way 
to  quantify  the  classification  outcome.  It 
measures  the  difference between the  ac-
tual agreement (indicated by the diagonal 
elements of the matrix) and the Hypothe-
sis  Random  Agreement  (forecast  by  the 
product of the row and column margins). 
In  contrast  to  overall  accuracy,  the  user 
and producer accuracies provide an under-
standing of the quality of the classification 
of  each class,  whereas  the  user  accuracy 
(UA) is defined as the percentage of classi-
fied pixels that correctly correspond to the 
ground  truth  (Sabat-Tomala  et  al.  2020), 
i.e., it is the ratio of correctly predicted ob-
servations in each column, while the pro-
ducer  accuracy (PA)  indicates  for  a  given 
class the proportion of the reference data 
that are classified correctly (Brovelli  et al. 
2015). It is calculated as the number of pix-
els in a given class split by the number of 
pixels  in  the reference data in  that  class. 
User and producer accuracies can be com-
puted as follows (eqn. 9, eqn. 10):

(9)

(10)

The  F1  score  is  a  meaningful  evaluation 
matrix and a measure of the accuracy of a 

test. It is calculated from the precision (P, 
mean  producer  accuracy),  and  recall  (R, 
mean user accuracy) of the test, where the 
precision is the number of true positive re-
sults divided by the number of all positive 
results, including those not correctly identi-
fied, and the recall  is  the number of true 
positive results divided by the number of 
all  samples  that  should have been identi-
fied  as  positive  (Gao  et  al.  2016).  The  F1 
score  is  mathematically  expressed  as  fol-
low (eqn. 11):

(11)

Results

Assessing the effect of speckle filter 
type on the classification accuracy

We  present  the  outcomes  obtained  by 
employing diverse filters on the combined 
SAR product.  Tab. 1 reports a comprehen-
sive summary of the performance of differ-
ent  filter  types,  focusing  on  OA  and  K. 
These metrics play a pivotal role in deter-
mining  the  optimal  filter  choice  for  our 
classification objectives.

The classification results confirm the su-
periority  of  Lee sigma with different win-
dow size filters in terms of land cover clas-
sification and performance. The OA result-
ing from the classification of the VV, VH/VV 
using Lee sigma size 11×11 and size 13×13 fil-
ters are 44.43% (K = 0.34), and 43.57% (K = 
0.33), respectively. Based on the results re-
ported in  Tab. 1, it is evident that the Lee 
sigma 11×11 filter consistently produces su-
perior results by effectively combining mul-
tiple SAR products. Therefore, it has been 
determined as the optimal filter type to be 
used in the subsequent classification. While 
numerous studies have extensively investi-
gated the application of  SAR imagery for 
land cover/land use (LC/LU) classification, it 
is interesting to note that several of these 
studies have opted for the Lee sigma filter 
with  varying  window  sizes  (El-Deentaha 
2017,  Liu  et  al.  2019).  The  current  study 
shows notable progress in filter type com-
pared to previous research (Moumni et al. 
2021,  El Moussaoui et al. 2021), due to the 
use of Lee Sigma filter with a window size 
of 11×11, which represents a significant im-
provement over previous methods and sig-
nificantly  increases  the  overall  effective-
ness of the classification process.

Assessing the effect of GLCM texture 
features on the classification accuracy

Tab. 2 reports the outcomes of the GLCM 
texture  analysis  in  terms  of  accuracy  as-
sessment  (OA)  and  kappa  (K)  values  in 
both VV and VH polarizations. The results 
show that the highest OA (36.35%) and K 
(0.27) were achieved by employing a stack 
of eight GLCM textures. This stack was de-
rived  from  the  temporal  series  of  the  S1 
SAR  images,  comprising  26  scenes  and 
yielding 8 texture products for each polar-
ization, thus forming a 416-band stack. No-
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tably,  differences  were  observed  in  the 
Overall  Accuracy of  GLCM texture.  In the 
existing  literature,  the  selection of  GLCM 
texture depends on the surface type and 
land  cover.  For  example,  Caballero  et  al. 
(2020) selected four GLCM textures (con-
trast,  correlation,  entropy,  and  variance) 
were selected in the analysis of an irrigated 
cultivated plain in the southern province of 
Buenos Aires, Argentina. In another study, 
Tavares et al.  (2019) selected three GLCM 
features  (mean,  variance and correlation) 
for analyzing an area in the coastal  Ama-
zon,  characterised  by  a  complex  humid 
tropical  environment  with  an  intercon-
nected relationship between flowing rivers 
and the ocean (Tavares et al. 2019).

Assessing the effect of DEM spatial 
resolution on the classification accuracy

To  assess  the  influence  of  integrating 
each DEM layer into the SAR, optical and 
combined products, several tests were car-
ried out. The results in terms of overall ac-
curacy  (OA)  and  K  statistic  are  shown  in 
Tab. 3. Combining the DEM layer with 30 m 
resolution with  the  non-combined optical 
product (NDVI) and the SAR product (VV; 
VH/VV)  gave  the  highest  values.  These 
reached 93.25% with K = 0.91 for the NDVI 
product and did not exceed 47.55% with K = 
0.38 for  the (VV;  VH/VV) product.  On the 
other  hand,  the  use  of  the  12.5  m  DEM 
layer gave the best result in the fusion be-
tween optical and SAR products (NDVI; VH) 
with an OA of 91.71% and K = 0.89.

It  should be noted that the inclusion of 
the 90 m DEM layer in the optical and SAR 
products did not result in any improvement 
compared to other DEM layers (12.5 m and 
30 m of spatial resolution).

Comparison and analysis
The quality of the classification obtained 

was further assessed by visually examining 
the classified images.  Fig. 4 illustrates the 
images obtained for the scenarios showing 
high overall accuracy (OA). Noticeable dif-
ferences  between  the  classifications  of 
Sentinel-1  and  Sentinel-2  products  can  be 
observed. The quality of the classified SAR 
images is comparatively lower in terms of 
sharpness, despite the reduction in speckle 
impact  after  applying  the  filter.  The  low 
quality  of  the  image  is  due  to  the  great 
confusion of the classes “Argan” and “No 
vegetation”  with  the  olive  tree  stands, 
which are dominant on SAR-derived maps. 
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Tab. 1 - Overall accuracy (OA) and Kappa index (K) of filter types using the different 
SVM algorithms.

Scenarios Filter types
VV,VH/VV VH,VH/VV VH,VV,VH/VV VH,VV

OA(%) K OA(%) K OA(%) K OA(%) K

Lee 38.45 0.28 36.16 0.26 36.65 0.27 35.73 0.25

Lee Sigma (5size) 38.01 0.28 36.02 0.26 36.56 0.27 34.98 0.25

Lee Sigma (7size) 40.19 0.31 37.35 0.27 38.41 0.29 36.81 0.25

Lee Sigma (9size) 43.57 0.33 38.61 0.29 40.34 0.31 37.58 0.27

Lee Sigma (11size) 44.43 0.34 41.45 0.31 43.34 0.33 40.94 0.31

Lee Sigma (13size) 43.57 0.33 40.83 0.30 42.01 0.32 39.97 0.30

Lee Sigma (15size) 42.96 0.32 41.37 0.31 41.09 0.31 38.21 0.29

Lee Sigma (17size) 42.73 0.32 41.01 0.31 42.33 0.32 39.88 0.30

Enhancedlee (3size) 35.96 0.26 35.62 0.25 36.51 0.26 36.85 0.26

Enhancedlee (5size) 39.60 0.30 39.57 0.30 40.96 0.31 41.65 0.31

Frost 37.40 0.27 35.76 0.25 36.31 0.26 35.30 0.25

Gamma Map 39.47 0.29 37.66 0.27 38.06 0.28 36.82 0.26

Boxcar 39.58 0.30 37.23 0.27 38.82 0.29 37.01 0.26

IDAN4 39.77 0.30 38.74 0.28 38.18 0.28 36.42 0.25

Median 37.43 0.27 36.51 0.26 35.60 0.25 35.53 0.25

Refinedlee 37.75 0.27 35.85 0.25 36.21 0.26 33.92 0.23

Tab. 2 - Summary of the results achieved 
with  the  classification based on GLCM 
texture.  (OA):  Overall  Accuracy,  (k): 
Kappa index.

GLCM texture OA% K

(1) Contrast 20.24 0.12

(2) Angule Second Moment 30.91 0.21

(3) Variance 20.34 0.12

(4) Correlation 25.16 0.15

(4) Mean 28.79 0.20

(6) Entropy 33.70 0.22

(7) Homogeneity 32.27 0.21

(8) Dissimilarity 27.81 0.16

(6)+(7) 33.73 0.23

(2)+(5)+(6)+(7) 33.13 0.22

(1)+(2)+(4)+(6) 34.01 0.24

All statistics 36.35 0.27

Tab. 3 - Overall accuracy (OA) and Kappa index (K) of the classification using different spatial resolution of the DEM layer.

DEM resolution 
scenarios

Without DEM DEM (12.5 m) DEM (30 m) DEM (90 m)

OA (%) K OA (%) K OA (%) K OA (%) K

NDVI 86.87 0.84 90.50 0.88 93.25 0.91 Overestimation

NDVI; VV 86.03 0.83 90.25 0.88 90.72 0.88 90.58 0.88

NDVI+VH 84.82 0.82 91.71 0.89 90.25 0.88 Overestimation

VV+VH+NDVI 83.88 0.81 87.53 0.85 88.84 0.86 88.79 0.86

VH 27.23 0.14 42.12 0.33 41.56 0.31 42.38 0.32

VV 29.82 0 .18 43.31 0.34 42.56 0.33 41.23 0.31

VH/VV 37.78 0.28 39.78 0.29 40.38 0.30 39.56 0.29

VV+VH/VV 44.43 0.34 46.99 0.38 47.55 0.38 46.47 0.37

VH/VV+ Texture 37.42 0.29 40.83 0.31 41.47 0.32 41.42 0.30

VV+VH/VV+ Texture 39.03 0.31 41.43 0.32 42.21 0.32 40.69 0.31

VV+VH 40.94 0.31 44.78 0.35 44.77 0.34 41.92 0.31

VH+VH/VV 41.45 0.31 45.91 0.36 46.67 0.37 44.98 0.35

VH+VV+VH/VV+ NDVI 85.64 0.82 89.68 0.86 90.84 0.88 Overestimation

VV+VH+ VH/VV 43.34 0.33 44.69 0.34 46.90 0.37 46.16 0.36
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Integrating  SAR  and  optical  data  in  the 
classification process led to a decrease in 
the quality of NDVI classification, which can 
be attributed to scattered pixels in homo-
geneous areas across the entire region, re-
sulting in a visually noisy appearance of the 
categorized SAR products.

Including a DEM layer with a resolution of 
30 m on the SAR and optical products en-
hanced the classification results, improved 
the image quality, and decreased the con-
fusion among the above classes, especially 
in the mountain areas. This result exceeds 
previous research findings (El Moussaoui et 
al. 2021).

During the classification of scenarios con-
taining radar products, we observed a lack 
of  sharpness  in  the  definition  of  the  la-
belled  paths  on  the  images,  which  ap-
peared “bruised”. Therefore, a smoothing 
process was applied using the ENVI com-
mand  “Majority/Minority  Analysis”  which 
filters the image by changing the value of 
the central pixel of a window of dimension 
n×n using the most frequent value in the 
window  (Yuan  et  al.  2012).  To  avoid  an 
“over-smoothing”, we have chosen a win-
dow of  dimension 3×3.  Radar  images  be-
fore and after smoothing are shown in Fig.
5.  Visually,  the quality  has  improved,  and 
these  products,  derived  exclusively  from 
the  Sentinel-1  data,  achieved  the  same 
quality obtained in our previous studies (El 
Moussaoui et al. 2021,  Moumni & Lahrouni 
2021).  Thus,  the  above  smoothing  tech-
nique  was  applied  once  for  all  scenarios 
(optical and SAR classified images), giving 
satisfactory  results  both  in  terms  of  OA 
and K (Tab. 4). 

Argan forest map production
Fig. 6 presents the best-produced argan 

tree maps derived from the use of optical 
data (NDVI), the fusion of NDVI with DEM 
layer (NDVI, DEM) and the combination of 
tree data (NDVI,  VH,  DEM).  Tab.  5 shows 
the results of the most accurate classifica-
tion, including the producer accuracy (PA), 
user  accuracy  (UA)  and  F1-score  of  each 
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Tab. 4 - Overall accuracy (OA) and Kappa index (K) before and after the application of 
the smoothing technique. For more details, see text.

Scenarios
Before Smoothing After Smoothing

OA (%) K OA (%) K

VV ; VH/VV 44.43 0.34 45.90 0.36

NDVI ; VV 86.03 0.83 88.32 0.85

NDVI ; VH; VV ; DEM 88.84 0.86 91.66 0.897

DEM ; VV ; VH/VV 47.55 0.38 47.99 0.39

NDVI ; VH ; DEM 90.25 0.88 93.01 0.914

Fig. 4 – Mapping results 
using the best classifica-
tions obtained from optical 
(NDVI) and SAR (VV; VH; 
VH/VV) products.

Fig. 5 - Resulting maps 
of the best SAR 

images before and 
after smoothing.
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class (tree class). These results provide in-
valuable insight into the performance and 
efficiency  of  our  classification  methodol-
ogy.

Discussion
In  this  study  we  tested  different  filters 

available in the SNAP software to identify 
the most appropriate one in terms of over-
all  accuracy  (OA)  and  producer  accuracy 
(K).  The results showed that the Lee sigma 
filter with a size of 11×11 gave the best re-
sult in term of OA and the quality of image 
for both polarisations (VV,  VH) and other 
scenarios.  Interestingly,  this  finding  con-
trasts  with  the  approach  adopted  by 
Moumni et al. (2021) where the enhanced 
Lee filter was used as default, despite the 
similarity of data and study region.

In this study, most classifications showed 
comparable accuracy in  VH and VV polar-
izations  when  only  Sentinel-1  products 
were  considered.  However,  the  classifica-
tion based on the VH/VV ratio resulted in 
higher  accuracy  levels  than individual  po-
larizations,  which contrasts  with the find-
ings obtained by Chakhar et al. (2021). The 
VH/VV ratio could be successfully used for 
biophysical  parameter retrieval  and direct 
biomass assimilation in crop models. Simi-
lar results have been reported in previous 
studies  (Veloso  et  al.  2017).  Indeed,  the 
combination  of  eight  GLCM  parameters 
used  in  our  study  yielded  better  results 
than the standard combination of three pa-
rameters (variance, correlation and mean) 
used  by  Moumni  et  al.  (2021).  Moreover, 
the  inclusion  of  texture  statistics  derived 

from the SAR images using the GLCM did 
not  improve  classification  accuracy  com-
pared to SAR products alone. This finding 
contrasts with our initial expectations and 
differs from previous studies (Akar & Gün-
gör 2015, Zakeri et al. 2017). 

Our results reveals that the optical data 
(NDVI)  achieved the  highest  classification 
accuracy  among  the  non-combined  prod-
ucts, with an OA of 86.87% and K value of 
0.84.  In contrast,  the classification of  the 
best-case  scenario  using  SAR  data  (VV, 
VH/VV) resulted in an OA of 45.90% and K 
value  of  0.36  after  applying a  smoothing 
technique. The decrease in classification ac-
curacy observed in SAR products can be at-
tributed to the impact of various physical 
variables  associated  with  crop  biomass, 
structure,  and  ground  conditions  on  SAR 
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Tab. 5 - UA and PA of the best results of the optical product (NDVI), SAR product (VV; VH/VV), optical and SAR combined product 
(NDVI; VV), and optical, SAR, and DEM combined product (NDVI; DEM, VH). (UA): User accuracy, (PA): Producer accuracy.

Class
NDVI VV; VH/VV NDVI; VV NDVI;DEM;VH

PA(%) UA(%) F1score PA(%) UA(%) F1score PA(%) UA(%) F1score PA(%) UA(%) F1score

Argan 88.63 69.33 77.8 58.46 62.94 60.61 86.92 70.69 77.97 90.99 83.02 86.82

Olive 54.23 43.25 48.12 72.52 31.99 44.39 76.49 67.84 71.91 90.04 91.87 90.94

Sandarac gum 97.38 95.7 96.53 55.19 46.78 50.64 97.95 98.96 98.45 97.69 98.96 98.32

Sandarac gum+ Argan 75.08 90.04 81.88 61.21 68.84 64.8 81.59 93.56 87.16 96.48 98.01 97.23

Fallow 86.19 97.63 91.55 44.37 29.58 35.49 67.8 94.79 79.05 76.27 90.36 82.72

Agricultural 98.53 88.16 93.05 45.06 29.49 35.65 99.68 82.59 90.33 98.41 80.26 88.41

No vegetation 95.51 98.06 96.76 21.55 48.85 29.91 95.32 94.42 94.86 93.23 96.54 94.85

Fig. 6 - Obtained 
maps of the spa-

tial distribution 
of the Argan 

tree using 
(NDVI; DEM) 

and (NDVI; VH; 
DEM).

Fig. 7 - Temporal behaviour of radar products σ(VH), σ(VV), and σ(VH/VV) of the different classes.
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backscatter  signals.  Factors  such  as  soil 
moisture,  surface  roughness,  and  terrain 
topography  affect  the  backscatter  from 
the ground, while vegetation backscatter is 
affected  by  factors  like  vegetation  3D 
structure and water content (Jia et al. 2013, 
Torbick  et  al.  2017).  The F1  scores  of  the 
[VV, VH/VV] scenario (Tab. 5) show that the 
most misclassified cover types are no vege-
tation (29.91%), agricultural (35.65%), fallow 
(35.49%), and olive (44.39%). The confusion 
among  these  classes  is  explained  by  the 
similarity of the SAR backscatter (Fig. 7).

As for the optical classification, the olive 
tree is the most confused vegetation type 
(F1 score=48.12%).  In our study area, olive 
trees are generally cultivated around small 
towns for local use, with different densities 
and with or without annual cultural cares. 
Despite there are a few zones in the study 
area where the argan is  mixed with olive 
trees, the correct classification of this veg-
etation type is hampered by the similarity 
of the optical  profiles (NDVI) of the olive 
and  argan+sandarac  gum  (Moumni  et  al. 
2021).  These  results  are  consistent  with 
those obtained by Chakhar et al. (2021) and 
Clauss et al. (2018). 

In  this  study  the  fusion of  multisensory 
data (NDVI, VV) provided the optimal com-
bination  of  optical  and  SAR  data  and  re-
sulted in higher classification accuracy (OA 
= 88.32%, K = 0.85) compared to the classifi-
cation based solely on optical data (OA = 
86.87%, K = 0.84). The F1 score for the olive 
class significantly improved from 48.12% to 
71.91% with the data combination (Tab. 5). 
This improvement can be attributed to re-
duced  confusion  between  olive  tree  and 
other  classes.  These  results  highlight  the 
strong correlation between the optical and 
SAR sensors. The combination of different 
data sources, including optical imagery and 
SRTM  (DEM)  led  to  significant  improve-
ments in classification results (OA = 93.25%, 
K = 0.91). The integration of data sources 
enhances the accuracy and reliability of the 
classification process, underscoring the ef-
fectiveness of using multiple data types in 
remote sensing studies.  Tab. 5 reveals no-
table improvements in the PA and UA, par-
ticularly for the olive class. Prior to the ad-
dition of the DEM layer, the PA was 54.23% 
and the UA was 43.25% for the olive class. 
However, after combining the data, includ-
ing the DEM layer, the PA increased signifi-
cantly  to  90.44%,  and the  UA rose  up to 
89.72%  for  the  same  class.  This  improve-
ment can be attributed to the integration 
of the DEM layer, thereby achieving a bet-
ter distinction between terrain relief mod-
els  of  varying  complexity  and  digital  sur-
face representations. 

In  contrast  to  our  findings,  Sirro  et  al. 
(2018) reported that the classification accu-
racy using optical data was superior to that 
obtained using optical+SAR data in forest 
and land cover classification. On the other 
hand, our results are fully consistent with 
those of  Mustak  et  al.  (2019) who evalu-
ated the performance of combined optical 

and SAR imagery  for  crop discrimination. 
These findings emphasize the importance 
of considering specific study contexts and 
objectives when interpreting classification 
results. 

Optical, SAR, and SRTM (DEM) data have 
been combined in several studies focused 
on crop type classification (Demarez et al. 
2019,  Dubeau et al.  2017), confirming that 
the  combinations  of  these  data  types 
yields  more  robust  results  compared  to 
classification based solely  on images.  The 
innovative  approach  adopted  in  the  cur-
rent study, which involves testing SAR pa-
rameters and integrating optical, SAR and 
DEM data,  has  significantly  improved the 
accuracy in the classification results of en-
demic argan tree areas in Central Morocco, 
making the detection of its spatial  exten-
sion more effective and accurate.

Conclusion
The main goal of this study was to assess 

the  influence  of  various  SAR  parameters 
and DEM layer resolutions on the identifi-
cation accuracy of argan trees in the rural 
municipality of Smimou (Central Morocco) 
using  remote  sensing  data.  Additionally, 
we  combinined  optical  satellite  imagery, 
SAR  data,  and  DEM  layers  aimed  to  im-
prove argan tree identification. 

To classify the Sentinel-1  images, we ap-
plied  different  filters  and  employed  the 
SVM  algorithm.  Our  results  showed  that 
the Lee sigma 11  × 11 size filter yielded the 
best  performance  in  the  classification  of 
tree  types.  To  improve  accuracy,  we  ap-
plied a smoothing technique to the post-
classified  items.  The  classification  results 
demonstrated that the integration of DEM 
layer with a resolution of 30 m produced 
the best OA and K values. Moreover, the 
application  of  smoothing  technique  to 
both Sentinel-1 and Sentinel-2 data led to a 
notable enhancement in the accuracy and 
quality  of  the resulting map.  Further,  the 
inclusion of  the DEM layer in  conjunction 
with  SAR  and  optical  products  increased 
the accuracy by approximately 6% to 7%. 

Based  on  our  findings,  future  research 
should  explore  different  SAR  parameters 
to further improve the results of Sentinel-1 
imagery.  Additionally,  combining  optical 
and SAR time series may lead to more ac-
curate  results.  We  also  recommend  ex-
tending this strategy to cover a larger area 
within  the  Essaouira  province.  This  study 
provides  a  more  comprehensive  and  in-
sightful understanding of the complex land 
cover patterns and dynamics in the study 
area. The results of this study have the po-
tential  to  support  decision  making  and 
more efficient management of the unique 
argan  tree  ecosystem  and  its  associated 
agricultural landscape.
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