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Old-growth forests have an important role in maintaining animal and plant di-
versity, are important carbon (C) reservoirs and are privileged sites to study
long-term plant  physiological  responses,  long-term forest  dynamics  and cli-
mate change impact on forest ecosystems. Several studies have highlighted
how old-living trees undergo age-related declines with hydraulic limitations
and reduction in photosynthesis, though some recent works have suggested
that such a decline is not always observed. Our study aims at understanding
the role of atmospheric CO2 increase on tree C uptake and stomatal conduc-
tance (gs) in old-living trees by analysing the long-term patterns of tree growth
and intrinsic water use efficiency (iWUE) in three old-growth forests in the
Balkans  (Bosnia-Herzegovina  and  Montenegro),  using  dendrochronology  and
isotopic analysis. We hypothesised a long-term increase in iWUE in the studied
old-growth forests, mostly related to enhanced photosynthesis rather than re-
duced stomatal conductance. Tree cores were sampled from dominant silver
fir (Abies alba Mill.) trees in each forest. Tree-ring widths were measured and
basal area increments (BAI) were assessed for each sampled tree and, from the
six longest chronologies, five decades were chosen for cellulose extraction, its
isotopic analysis (δ13C, δ18O), iWUE and leaf water 18O evaporative enrichment
above the source water (Δ18OL) determination. We observed a continuous and
significant increase in iWUE from 1800 to 2010 in the sampled dominant trees
at all the three old-growth forests. Our BAI data and our estimates of Δ18OL

across the study period support the idea that enhanced photosynthesis rather
than reduced stomatal conductance is the major driver of the measured iWUE
increase. Thus, our results support some recent findings challenging the hy-
pothesis that iWUE in forests is primarily the result of a CO2-induced reduction
in stomatal conductance as well as the so called hydraulic limitation hypothe-
sis.

Keywords:  Old-growth  Forests,  Intrinsic  Water-Use  Efficiency  (iWUE),  Basal
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Introduction
Human  activities  have  caused  approxi-

mately  1.0  °C  of  global  warming  in  2020
above  values  recorded  in  pre-industrial
times, with important changes in the inten-
sity and the frequency of some climate and
weather  extremes  (IPCC  2018).  Warming
caused  by  anthropogenic  greenhouse
gases emissions (GHGs) will persist for cen-
turies  to  millennia  (Matthews  &  Caldeira
2008,  Solomon et  al.  2009)  and  will  con-
tinue  to cause further  long-term changes
either in the climate system or in the bio-
sphere. In particular, atmospheric CO2 con-
centration has been constantly rising in the
last centuries because of human activities,
reaching  in  the  2000s  the  highest  levels
over the last 160,000 years (IPCC 2014). In
forest ecosystems, climate change is alter-
ing productivity,  species distribution,  tree
physiology  and  pest  disease  severity  and
frequency, with widespread tree mortality
phenomena (Allen et al. 2010, Anderegg et
al. 2012, Lindner et al. 2014, Seidl et al. 2014,
2018).  However,  increase  in  CO2 atmos-

pheric  concentration  can  stimulate  tree
growth, can modify plant physiology and fi-
nally affect forest dynamics (Magnani et al.
2007,  Ciais  et  al.  2008,  Lewis et  al.  2009,
Pretzsch et al. 2014). Indeed, elevated CO2

concentrations  can stimulate tree growth
due  to  enhanced  photosynthesis  (Ains-
worth & Long 2005). Moreover, higher at-
mospheric  CO2 levels  (Ca)  usually  lead  to
stomata closure, thus decreasing transpira-
tion rates and increasing assimilation rates
(Serna 2014, Xu et al. 2016). This leads to an
improvement  of  water  use  efficiency
(WUE) defined as the ratio between photo-
synthesis (A) and transpiration. Multiplying
WUE  by  vapour  pressure  deficit  (VPD)
yields to the intrinsic  water use efficiency
(iWUE = A/gs, where gs is the stomatal con-
ductance),  which  is  not  sensitive  to  in-
creased  transpiration  driven  by  abiotic
changes (Ehleringer  et  al.  1993,  Saurer  et
al.  2004).  Higher  iWUE  values,  coupled
with faster tree growth measured by tree-
ring width and converted into basal area in-
crement  (BAI),  have  been  previously  re-
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ported for several forests and linked to the
increase in atmospheric CO2 (Feng 1999, Liu
et  al.  2007,  Saurer  et  al.  2014).  However,
this relationship has been not always con-
firmed (Marshall & Monserud 1996, Water-
house et al. 2004, Van Der Sleen et al. 2015)
as an increase in iWUE alone may not di-
rectly  translate  into  higher  BAI  as  other
factors  (e.g.,  high  temperature,  recurrent
drought, nutrient limitation) may negative-
ly  influence  tree  growth  (Tognetti  et  al.
2014). More recently, Guerrieri et al. (2019)
reported  an  increase  in  iWUE  in  the  last
thirty  years  in  8  North  America  mature
temperate forests and linked it to an over-
all  increase in photosynthesis  rather than
to a reduction in stomatal conductance at
most sites.

Tree  rings  offer  insight  into  lifetime
growth patterns, allowing climate impacts
on trees to be evaluated (Fritts 1976). On
the other hand, stable carbon (C) isotopes
represent  a  useful  tool  to  better  under-
stand changes in tree growth and produc-
tivity related to climate conditions through
time. The variability of the C isotopic signa-
ture (δ13C) in wood gives information about
the plant’s  sensitivity to different climatic
and environmental conditions (McCarroll &
Loader  2006).  C  isotope  discrimination
(Δ13C)  can be related to CO2 flux  through
stomata and to changes in Ca to intercellu-
lar CO2 concentration (Ci) gradient and, by
consequence,  to  iWUE  (Francey  & Farqu-
har 1982,  Farquhar et al.  1989).  However,
the extent to which rising Ca has affected
long-term  iWUE,  and  whether  climate
could explain deviations from expected Ca-
induced growth enhancement, is still poor-
ly understood (Tognetti et al. 2014). On the
other  hand,  environmental  variation  of
δ18O in tree rings reflects the wide range of
variation in meteoric water, soil water and
transpiration (Gessler et al. 2014).  Barbour
& Farquhar (2000) found a strong relation-
ship  between  leaf  water  evaporative  en-
richment  (Δ18OL)  and  gs.  Moreover,  the
same  authors  proposed  an  equation  de-
scribing the relationship between Δ18OL and

18O enrichment of cellulose (Δ18Oc),  taking
into account the exchange of carbonyl oxy-
gen  with  unenriched  xylem  water.  Based
on  these  findings,  the  derived  Δ18OL was
used to constrain the contribution of stom-
atal  conductance  in  driving  observed
changes in iWUE (Guerrieri et al. 2019).

Old-growth stands have developed for a
long  period  of  time  without  relevant  hu-
man impact and/or stand replacing or ma-
jor  natural  disturbances,  and  have  three
main  structural  characteristics:  old  and
large trees, abundant coarse woody debris
in  different  decay  stages  and  a  multilay-
ered  vertical  structure  (Spies  2004).  Old-
growth forests  have an important  role in
maintaining animal and plant diversity, are
important  C  reservoirs  and  are  privileged
sites to study long-term plant physiological
responses, long-term forest dynamics and
climate  change  impact  on  forest  ecosys-
tems  (Motta  et  al.  2011).  Old-growth  for-
ests have been often considered to be in-
significant  as  carbon  sinks  because of  an
equilibrium between assimilation and respi-
ration  (Odum  1969).  This  hypothesis  is
based on studies showing a decline in net
primary  productivity  at  stand  level  with
stand age (Yoder et al. 1994,  Gower et al.
1996, Ryan et al. 1997) and in photosynthe-
sis at tree level (Hubbard et al. 1999) and
the  general  idea  that  ecosystem  respira-
tion increases with stand age (Odum 1969).
Some  recent  works  have  suggested  that
such  a  decline  is  not  always  observed  at
stand level (Luyssaert et al. 2008, Yu et al.
2008) and that old-growth forests are still
accumulating C,  as  stand structure rather
than age determines the overall forest ca-
pacity  to  absorb  C  from  the  atmosphere
(Zhou  et  al.  2006,  Luyssaert  et  al.  2008,
Phillips et al. 2008). However, as far as sin-
gle trees are concerned, it has been proved
that taller trees differ physiologically from
shorter, younger trees (Ryan et al.  2006):
several  studies have highlighted how old-
living  trees  undergo  age-related  declines
with hydraulic limitations (i.e., reduction in
stomatal  conductance  and  in  leaf-specific

hydraulic  conductance)  and  reduction  in
photosynthesis (Yoder et al. 1994,  Ryan &
Yoder 1997,  Ryan et al. 2006). In this con-
text, we focused our attention on old-living
silver  fir  (Abies  alba  Mill.)  trees  in  three
mixed  old-growth  forests  in  the  Balkans
with the aim to better understand the rela-
tionship between growth dynamics, atmo-
spheric CO2 concentration increase and cli-
mate conditions through time. By measur-
ing cellulose δ13C in tree-rings, the present
study  hypothesised  an  increase  in  the
iWUE  of  old-living  silver  trees  during  the
last  two centuries.  Moreover,  using cellu-
lose δ18O data and BAI we tested the hy-
pothesis  that  the  increase  in  iWUE  was
mostly related to enhanced photosynthesis
rather  than  reduced  stomatal  conduc-
tance.

Materials and methods

Study area
Three study sites were selected in three

different  old-growth  forests,  along  a  100
km  transect  from  North-west  to  South-
east,  in  the  Balkans,  in  South-eastern  Eu-
rope (Fig. S1 in Supplementary mayterial).
All  of  the three sites  are in  the  montane
belt  and  are  mixed  with  silver  fir  (Abies
alba Mill.),  Norway  spruce  (Picea  abies
Karst),  and European beech (Fagus sylvat-
ica L.).

The first site (LOM) is located in the Lom
forest  reserve  (44°  27′ N,  16°  28′ E;  1250-
1500 m a.s.l.) in the Dinaric Alps in Bosnia
and  Herzegovina.  Climate  is  continental
with  maritime airstream influences.  Mean
annual precipitation is about 1600 mm and
mean annual temperature is 7.6 °C (Bottero
et al. 2011).

The second site (PER) is located in the Pe-
rućica forest reserve (43°  19′ N,  18°  40′ E;
600-2800 m a.s.l.), inside the Sutjeska Na-
tional  Park in the southern Dinaric  Moun-
tains, Bosnia and Herzegovina. Climate is a
mix  of  Mediterranean  and  continental,
with  mean  annual  precipitation  of  1400
mm and mean annual temperature of 11.3
°C (Nagel & Svoboda 2008).

The third site (BIO) is located in the Na-
tional Park of Biogradska Gora (42° 53′ N,
19°  36′ E;  830-2100 m a.s.l.)  in  the north-
eastern part  of  Bjelasica  mountain  range,
Montenegro (Motta et al. 2015). The mean
annual  precipitation  at  Biogradsko  lake
(1093 m a.s.l.) is 1962 mm, with a mean an-
nual temperature of 5 °C.

Tree sampling and dendrochronological 
analysis

To characterize  the  forest’s  structure,  a
regular  120-m  grid  was  superimposed  to
the 1:10.000 raster map of each forest and
30 to  40 sampling  points  were  randomly
selected at each site (in 2014, 2016 and 2017
in PER, LOM and BIO sites, respectively). At
each point, a 615.5 m2 circular plot was set
up for the measurements of the living trees
(dbh ≥ 7.5 cm), tree species were assessed
and  tree  mean  diameter  at  1.30  m  (dbh)
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Tab. 1 - Mean stand characteristics at each experimental site (LOM = Lom; PER = Peru-
cica; BIO = Biogradska Gora). Mean ± standard error (n=30).

Variable
Site

LOM PER BIO

Stand Density (n ha-1) 489.0 ± 19 a 432.0 ± 21 ab 412.0 ± 22 b

Mean Diameter (cm) 35.4 ± 0.8 a 41.7 ± 1.6 b 43.2 ± 1.8 b

Total Basal Area (m2 ha-1) 47.1 ± 1.8 a 59.1 ± 4.5 b 60.1 ± 4.4 b

Total Species 
Density (n ha-1)

Fir 122.0 ± 9.0 a 90.0 ± 13 a 92.0 ± 11 a

Beech 296.0 ± 13 a 337.0 ± 20 a 298.0 ± 21 a

Spruce 69.0 ± 9.0 a 6.0 ± 2.0 b 10.0 ± 3.0 b

Species Basal 
Area (m2 ha-1)

Fir 22.2 ± 1.6 a 39.5 ± 4.7 b 34.1 ± 4.7 ab

Beech 14.3 ± 0.7 a 17.0 ± 1.5 a 18.7 ± 2.1 a

Spruce 10.4 ± 1.5 a 2.6 ± 1.2 b 5.6 ± 2.0 b

Number of Sampled Trees (Fir) 28 43 7
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was measured (Motta  et  al.  2015).  More-
over, one permanent plot (1 ha) was set up
for long-term monitoring purposes at each
forest.

For  the  purposes  of  this  study,  we  de-
cided to consider only silver fir as it was the
dominant species in term of basal area at
all  sites  (Tab.  1),  because  of  its  longevity
and because it mostly occupied the upper
canopy layer (PER is reported in Fig. S2 as
example). Thus, one tree core was taken at
the bottom of the stem from 7-43 individu-
als of silver fir within the top canopy layer
(i.e., the tallest trees in the stand) depend-
ing on the site (Tab. 1, Fig. S2 in Supplemen-
tary  material),  using  an  increment  borer.
Cores were stored in cardboard and, once
in  laboratory,  samples  were  glued  on
woody  supports  and  sanded  with  paper
with 60, 120, 240, 320 and 600 grit to bet-
ter highlight tree rings.

Tree-ring widths were measured for each
core using a LINTABTM (Frank Rinn, Heidel-
berg,  Germany)  and  then  were  visually
cross-dated using TSAPWin® software ver.
4.81 (Rinntech-Metriwerk GmbH & Co. KG,
Heidelberg, Germany). COFECHA software
(Grissino-Mayer  2001,  Holmes  1983)  was
used  for  the  statistical  cross-date  and  to
check  chronologies  quality  (Castagneri  et
al. 2014).

Isotopes analysis
From all the samples at each site, the six

longest chronologies were selected. Then,
tree rings for each core were grouped us-
ing  10-year  intervals,  cut  and  separately
milled using an ultra-centrifugal mill with a
sieve of 0.5 mm (ZM 100®, Retsch Tecnol-
ogy,  Haan,  Germany).  In  order  to  have
enough replications at each plot, we con-
sidered only five consecutive time-intervals
along each time-series for the further anal-
ysis (1800-1810; 1850-1860; 1900-1910; 1950-
1960;  2000-2010).  Wood  powder  was
treated  with  a  two-step  digestion  to  ex-
tract  cellulose according to  Green (1963).
Briefly, samples were sealed in Teflon bags
and at first treated two times with NaOH
5% solution for 2 hours at 60 °C. Then, sam-
ples were treated with NaClO2 7% solution,
adjusting the pH to 4-5 with acetic acid, for
10  hours  at  60  °C.  Depending  on  sample
weight and its cellulose content, this phase
was repeated for three or four times until
samples  totally  bleached,  thus  indicating
that  all  fibres  but  cellulose  were  com-
pletely  digested.  Dried  sub-samples  were
finally weighted in tin capsules for δ13C for
analysis  using  a  CHNS  elemental  analyser
(Vario  Microcube®,  Elementar,  Langensel-
bold, Germany) coupled with a stable iso-
tope  ratio  mass  spectrometer  (IRMS  Iso-
prime® 100,  Elementar).  We  also  deter-
mined  δ18O  of  a  sub-sample  of  cellulose
weighted in silver capsules for each consid-
ered time period using a TC/EA elemental
analyser  (Flash  2000®,  ThermoScientific,
Waltham, MA,  USA)  connected to an iso-
tope ratio mass spectrometer (Delta V Ad-
vantage®, Thermo Scientific) via a continu-

ous flow interface (ConFlo IV®, Thermo Sci-
entific). Carbon and oxygen isotope ratios
were expressed in per mil  (‰) relative to
the Vienna Pee Dee Belemnite (VPDB) and
Vienna  Standard  Mean  Ocean  Water  (VS-
MOW) international standards, respective-
ly.

Data analysis
The  C  isotopic  discrimination  (Δ13C)  for

each selected  period  and  tree  was  calcu-
lated according to  Farquhar  et  al.  (1982 -
eqn. 1)

(1)

where δ13Ca is the isotopic signature of at-
mosphere  and  δ13Cc is  the  isotopic  signa-
ture  of  the  cellulose.  As  our  δ13Cc values
represent an average value for 10-year in-
tervals, δ13Ca were calculated as the mean
value for the same temporal interval of the
relative  δ13Cc measurements  using  values
published  in  McCarroll  &  Loader  (2006)
and  those  from  Mauna  Loa  Observatory
since 2003  (https://www.esrl.noaa.gov/gm
d/).

We used  the  carbon  isotope discrimina-
tion model for C3 plants (eqn. 2) proposed
by Farquhar et al. (1982) and Francey & Far-
quhar (1982) to compute intercellular CO2

concentration (Ci, ppm) based on Δ13C and
atmospheric  CO2 concentration  (Ca,  ppm;
data from Mauna Loa Observatory – http://
www.esrl.noaa.gov/gmd/):

(2)

where a is isotope fractionation during CO2

diffusion through stomata (a = 4.4‰),  b is
isotope fractionation during carboxylation
processes  (b =  27‰).  According  to  the
Fick’s  law,  net photosynthesis  (A)  can be
calculated as follows (eqn. 3):

(3)

where  gCO2 is the leaf conductance to CO2.
Knowing  that  leaf  conductance  to  water
vapour (gH2O) is equal to 1.6 · gCO2, we calcu-
lated  iWUE (μmolCO2 molH2O-1), expressed
as  the  ratio  between  photosynthesis  and
stomatal conductance to H2O (A/gH2O) com-
bining all the previous equations (eqn. 4):

(4)

We also calculated the 18O enrichment of
cellulose (Δ18Oc) according to eqn. 5:

(5)

where δ18OP is the annual δ18O of the pre-

cipitation  estimated  following  Barbour  et
al. (2001 – eqn. 6):

(6)

where  Ta,  Pa and  E  are  the  mean  annual
temperature (°C),  the annual precipitation
(m) and the elevation of the weather sta-
tion  (m),  respectively.  We  assumed  that
there were no differences among trees in
the depth water was taken up and,  thus,
that the soil water δ18O reflected precipita-
tion δ18O. δ18OP was computed as the aver-
age between the values of the weather sta-
tion  located  in  Sarajevo  (43.8678°  N,
18.4228° E  – 630 m a.s.l.;  data availability:
1901-2019)  and  the  one  located  Zagreb
(45.8167° N, 15.9781° E  – 157 m. a.s.l.; data
availability:  1881-2019)  as  these  two  sta-
tions showed similar rain and temperature
averages across all the data period. Climate
data were downloaded from Global Histori-
cal Climatology Network website (GHCND).
Long term δ18OP trends at the two stations
are reported in Fig. S3 (Supplementary ma-
terial).

We  finally  estimated  the  leaf  water  18O
evaporative enrichment above the source
water (Δ18OL) according to  Barbour & Far-
quhar (2000) and Gessler et al. (2014):

(7)

where  pex is  the proportion  of  exchange-
able oxygen in  cellulose formed from su-
crose,  px is  the  proportion  of  unenriched
(source) water in the developing cambium
cell and εWC is the isotope fractionation oc-
curring  during  cellulose  synthesis  in  the
stem (27‰). Generally, a fixed value of 0.40
is considered for pxpex.

Yearly basal area increment (BAI i, cm2 yr-1)
was calculated using tree-ring width as fol-
lows (eqn. 8):

(8)

where Ri+1 is  the radius at  the end of  the
year i and Ri is the radius at the beginning
of the year  i,  Δri is  the tree-ring width at
year i.

Statistical analysis
All statistical analyses were performed us-

ing R software ver. 3.6.0 (R Foundation for
Statistical Computing 2019 – https://www.r-
proj.org). We compared iWUE, ci, Δ18OL and
BAI in the selected decades at each site by
using  one-way  ANOVA  and  Tukey’s  post-
hoc test  when  significant  (p<0.05)  differ-
ences were detected. All data were eventu-
ally  log-transformed  before  analysis  to
meet the requirements for parametric sta-
tistical tests using “powerTransform” and
“bcPower” functions of the “car” package
(Fox & Weisberg 2019). Linear regressions
were used to explain changes in iWUE with
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δ 13C a−δ 13C c

1+
δ13Cc
1000

Δ13C=a+
(b−a )⋅Ci
Ca

⋅Ci

=Ca⋅
(δ 13Ca−δ13Cc−a)

(b−a)

A=gCO2⋅(Ca−C i)

iWUE= A
gH 2O

=

Ca
1.6

⋅b−Δ13C

b−a

Δ18OC=
δ 18OC−δ18OP

1+
δ18OP
1000

δ 18OP=0.52⋅T a−0.006⋅T a
2

+2.42⋅Pa−1.43⋅Pa
2

−0.046⋅√E−13.0

Δ18O L=
Δ18OC−εWC
1− px pex

BAI i=π⋅(R i+12 −R i
2)

=π⋅[(Ri+Δ ri )
2−R i

2]
=π⋅(Δ ri2+2⋅Δ ri⋅∑

i=1

n−1

Δ ri)
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BAI; before regression, data normality was
checked  using  the  Shapiro-Wilk  test.  All
data throughout the text and in tables and
figures are reported as mean ± standard er-
ror.

Results
The  mean  stand  characteristics  at  each

experimental site are reported in Tab. 1. To-
tal  stem density  ranged from 412  ±  22  to
489 ± 19 trees ha-1 at BIO and LOM, respec-
tively, but total basal area followed an op-
posite trend, being the highest at LOM and
the lowest at BIO (60.1 ± 4.4 and 47.1 ± 1.8
m2 ha-1, respectively). European beech was
the dominant species in terms of stem den-
sity (n ha-1) at all the three sites, but silver
fir was always dominant in terms of basal
area  (m2 ha-1).  The  oldest  measured  tree

ring series were 306, 267 and 273-year-old
in LOM, PER and BIO, respectively, though
it was not always possible to reach the cen-
tre of the stem.

Ci significantly increased through time at
all sites (LOM: p<0.001; PER: p<0.001; BIO:
p=0.01  – Fig.  1;  Tab.  S1  in  Supplementary
material) and was significantly related to Ca

(LOM:  R2=0.57,  p<0.001;  PER:  R2=0.93,
p<0.001; BIO: R2=0.64, p<0.001). We did not
find any significant difference in the ratio
Ci/Ca at BIO (p=0.06), but a significant de-
crease in Ci/Ca was measured for the peri-
ods  1950-1960  and  2000-2010  at  LOM
(p<0.001) and for the period 2000-2010 at
PER (p=0.04  – Fig.  S4,  Tab.  S5 in Supple-
mentary material). Trees also showed a sig-
nificant increase in their iWUE, as well as in
their BAI,  at all  sites (Fig.  2;  Tab.  S2, Tab.

S3),  reaching  significant  higher  values  es-
pecially at the end of the last century.

As far as δ18OC is  concerned, we did not
detect  any  significant  difference  among
the selected periods at all  the three sites
(data  not  shown;  p>0.05).  Moreover,  we
observed  no  changes  in  Δ18OL at  all  the
three sites for the periods when δ18OP was
available (1900-1910; 1950-1960; 2000-2010;
p>0.05  – Fig. 2,  Tab. S4 in Supplementary
material).

Fir trees showed a significant increase in
BAI with time (Fig. 2, Fig. 3; Tab. S2 in Sup-
plementary material) at all the three exper-
imental sites, especially after the beginning
of the 19th century. BIO had generally the
highest  growth rate,  though it  showed  a
slight decline in the last two decades, while
fir at PER had generally the lowest growth,
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Fig. 1 - Intercellular CO2 concentration (Ci, ppm) by selected decades at the three old-growth forests (PER: Perucica; LOM: Lom; BIO:
Biogradska Gora). Means ± standard error are displayed. Different letters indicate significant (p<0.05) differences among periods
after post-hoc Tukey’s test.

Fig. 2 - Intrinsic water-use
efficiency (iWUE, μmolCO2

molH2O-1), basal area incre-
ment (BAI, cm2 yr-1) and
leaf water evaporative
enrichment (Δ18OL) by

selected decades at the
three old-growth forests

(PER: Perucica; LOM: Lom;
BIO_ Biogradska Gora).

Means ± standard error are
displayed. Different letters

indicate significant
(p<0.05) differences

among periods after post-
hoc Tukey’s test.
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but did not show any decrease in growth
with time.

Using simple linear regressions, we found
that iWUE significantly increase with BAI at
all  sites  (LOM:  R2=0.68,  p<0.0001;  PER:
R2=0.42, p=0.0003; BIO: R2=0.45, p=0.0002
– Fig.  4;  Tab.  S6  in  Supplementary  mate-
rial).

Discussion
In our study,  iWUE showed a significant

increase in the last two centuries at LOM,
PER and BIO, (Fig. 2, Tab. S3). These trends
are  similar  to  those  measured  in  a  wide
range of ecosystems (Peñuelas et al. 2011,
Silva & Anand 2013, Frank et al. 2015) either
in temperate (Waterhouse et al. 2004, Sau-
rer & Siegwolf 2007,  Guerrieri  et al.  2019)
or  tropical/sub-tropical  forests  (Wu  et  al.
2015,  Wils et al. 2016), as well as at single
experimental sites (Battipaglia et al. 2013)
or across the whole Europe (Saurer et al.
2014),  but  none  of  these  studies  consid-
ered old-growth forests.

Variations in both A and gs influence the
overall  change in  iWUE  (Ehleringer  et  al.
1993, Saurer et al. 2004). The increase in at-
mospheric CO2 concentration positively af-
fects A by increasing the carboxylation rate
of Rubisco (Drake et al. 1997, Ainsworth &
Long  2005,  Huang  et  al.  2007)  and  posi-
tively influences tree growth rate (Linares
et al. 2009, Streit et al. 2013). In our case, Ci

increased proportionally to Ca, Ci/Ca stayed
constant over the last two hundred years
(BIO)  or  slightly  decreased at  the end of
last century (PER, BIO).  The measured in-
crease  in  Ci  is  consistent  with  what  re-
ported  by  Frank  et  al.  (2015) for  Europe
and  by  Guerrieri  et  al.  (2019) for  North
America  and  might  indicate  that  the  in-
crease  in  CO2 concentration  is  sustaining
photosynthesis and the growth of the sam-
pled dominant trees (Fig. 3) – the so called
“CO2 fertilization effect on A” (McCarroll &
Loader  2004,  Guerrieri  et  al.  2019).  We
were not able to quantify the absolute in-
crease in BAI for the whole stand (m2 ha-1

yr-1) and to disentangle the role of climate
change from small scale stand disturbance
dynamics  (i.e.,  release  from  suppression),

because of our sampling strategy. In fact,
taller trees may differ physiologically from
shorter,  younger  trees  (Ryan et  al.  2006)
and the selection of  only  dominant  trees
within the stands might over-estimate ab-
solute  growth  rates  (“slow-grower  sur-
vivorship  bias”  and  “big  tree  selection
bias” – Cherubini et al. 1998, Brienen et al.
2012, Nehrbass-Ahles et al. 2014, Duchesne
et al. 2019). On the other, silver fir has the
capacity for vigorous growth response af-
ter releases related to natural disturbances
of the top-canopy layer or to management
(Ferlin 2002) and this makes it  difficult to
disentangle the CO2 fertilization effect over

time. But, the trend in BAI reported in Fig.
3 can be considered a proxy of an overall
increase at stand level in the last decades.
Looking  at  Fig.  3,  the  sampled  dominant
trees did not show any significant decrease
in  tree  growth  after  well-known  heat-
waves, such as that in 2003: these results
seem to further confirm the high resistance
of  fir  to  drought  extremes  observed  in
other regions (Zang et al. 2014, Vitali et al.
2017) and the possibility of the species to
cope with the climate change (Vitasse et al.
2019).  The  measured  increase  in  BAI  and
the resistance to drought could be particu-
larly  important  for  the  Dinaric  Region,
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Fig. 3 - Mean 
annual basal area 
increment (BAI, 
cm2 tree-1 yr-1 – 
black lines) of the 
sampled silver fir 
trees (PER: Peru-
cica; LOM: Lom; 
BIO: Biogradska 
Gora). The grey 
lines represent the
standard error.

Fig. 4 - Basal area increment (BAI, cm2 tree-1 yr-1) with increasing intrinsic water-use efficiency (iWUE, μmolCO2 molH2O-1). Each point
represents a selected decade for each sampled tree. Black line represents the regression line and grey lines represent 95 th confi-
dence intervals.
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where silver fir has been one of the most
ecologically  and  economically  important
tree species, mainly managed using the se-
lection system (Boncina 2011).

On the other hand, increasing Ca may in-
duce stomata closure and, thus, plants may
improve their iWUE by reducing water loss
by transpiration (Farquhar et al. 1989,  Mc-
Carroll  &  Loader  2004).  Fir,  in  particular,
has been reported to be able to efficiently
control  its  transpiration  (Nourtier  et  al.
2014). In our case, as we did not observe
any change in Δ18OL, we can hypothesize a
constant gs over the last two centuries sim-
ilarly to what has been reported by Guerri-
eri  et  al.  (2019) for  mesic  sites  in  North
America  in  the  last  thirty  years.  This  and
the positive correlation between iWUE and
BAI at all our three old-growth forest sites
(Fig. 4, Tab. S6 in Supplementary material)
further  support  the  hypothesis  that  the
measured  increase  in  iWUE  over  time  is
more related to a stimulation of A rather
than  a  reduction  in  gs.  A  widely  held  as-
sumption is that, after an initial  period of
increasing growth, the mass growth rate of
individual  trees  declines  with  increasing
tree size (Weiner & Thomas 2001). On the
contrary,  Stephenson  et  al.  (2014) have
shown  that  mass  growth  rate  increases
continuously with tree size in hundreds of
tree  species.  Our  BAI  data  suggest  that
large, old trees do not act simply as senes-
cent  carbon  reservoirs,  but  actively  fix
large amounts of C and have been growing
even faster in the last decades. These data
are  in  agreement  with  the  substantial  in-
crease  in  silver  fir  growth  rate  measured
across several  European regions probably
promoted by warmer climate as well as by
the increase in nitrogen depositions and at-
mospheric  CO2 concentrations  (Bosela  et
al. 2014, 2018, Cavlović et al. 2015, Gazol et
al. 2015). Thus, the overall C sink potential
of old-growth forests might be higher than
previously  thought as  old-living dominant
trees  are not  undergoing any age-related
growth  decline.  The  lower  juvenile  tree
growth  is  also  supporting the hypothesis
that  such  a  C  sink  capacity  will  be  main-
tained for a longer period of time as trees
will  show a slower ontogeny (Büntgen et
al. 2019).

Conclusions
In the last two centuries, we observed a

continuous increase in iWUE in silver fir at
all the three old-growth forest sites in the
Balkans. By estimating leaf water δ18O from
cellulose isotopic analysis in tree rings and
using BAI measurements, we were able to
separate the relative contribution of assim-
ilation rates (A) and stomatal conductance
(gs). In particular, we observed an increase
in  iWUE,  BAI,  but  not  in  δ18OL.  Thus,  our
data  support  some  recent  findings  chal-
lenging the hypothesis that iWUE in forests
is primarily the result of a CO2-induced re-
duction  in  stomatal  conductance.  More-
over, our data support the idea that silver
fir might cope with the climate change.
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