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Remote sensing of american maple in alluvial forests: a case study in an 
island complex of the Loire valley (France)
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Due to their particular topographic position between land and river, riparian
forests are ecosystems rich in biodiversity. In France, along the Middle Loire
(from Nevers to Angers), Black poplar (Populus nigra L.) forests are often in
mixtures  with  the  American  maple  (Acer  negundo L.),  introduced into  the
country in the 18th century. We tested the detectability of American maple by
LiDAR and very high-resolution multispectral imagery on an island complex.
We found that coupling the point cloud height standard deviation with a vege-
tation index in  the red,  green and blue spectrums discriminated American
maple with a success rate of more than 90%.
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Introduction
Riparian forests are a key component of

river  ecosystems  due  to  their  position  at
the interface between water and land (Nai-
man et al. 2005,  Gurnell 2014). In the ana-
branch river landscape of the Middle Loire
in France (around 400 km between Nevers
and  Angers),  alluvial  forests  represent  a
significant part of the vegetation biomass
(Grivel  &  Gautier  2012).  Because  of  their
vulnerability  to  anthropomorphic  impact
(Rodrigues et al. 2006), riparian forests are
considered to be habitats of Special Com-
munity  Interest  in  the  Habitats  Directive
92/43/CEE  (EUNIS: G1.11  – Beslin & Gazeau
2016).  In  these  habitats,  groundwater  re-
duction due to channel digging (Dunford et
al. 2009), water pollution and the introduc-
tion of exogenous woody species have per-
turbed  the  natural  colonization  by  Salica-
ceae of river banks and islands (Asner et al.
2008).  For  example,  the  American  maple
(Acer  negundo L.,  AC)  was  introduced  in
France  in  1732  (Dumas  2019)  and  is  now
commonly  found  in  native  Black  poplar
(Populus  nigra  L.,  PN)  stands  (Berg  et  al.

2017). In addition, the reintroduction of the
European beaver in the 1970’s indirectly fa-
vored colonization by the introduced spe-
cies since beaver consumes the Black pop-
lar but not the American maple.

In  view  of  the  above-mentioned  ele-
ments,  regular  monitoring of  riparian for-
ests is important for their conservation and
management, all the more so in a context
of  global  warming,  as  these  forests  vary
with the water level from one year to an-
other and present multiple aspects.  Thus,
mapping these alluvial  forests and updat-
ing the maps on a near-annual basis are the
most  appropriate  tools  to  ensure  quality
monitoring.  Currently,  cartography  has
made tremendous progress thanks to Geo-
graphic  Information  Systems  (GIS)  soft-
ware and satellite or aerial imagery (Dufour
et  al.  2013,  Huylenbroeck  et  al.  2020).  In
France, the National Forest Inventory car-
ries out a permanent inventory of forest re-
sources and provides a great deal of data,
including  interactive  maps.  Data  are  col-
lected at both the stand and tree levels. At
the stand level, the forest cover type is in-

terpreted from infrared aerial images at a
50-cm resolution. The final product is a vec-
tor layer (BD Foret V2) with polygons of 0.5
ha minimum attributed to 32 categories of
species composition. However, neither AC
nor PN has a category of its own, so this
data cannot be used to monitor their spa-
tial  dynamics.  At  the tree level,  many pa-
rameters are recorded on the NFI sample
plots in different scientific domains such as
dendrometry, botany and pedology (Hervé
et  al.  2014).  Tree  data  include  diameter,
species and position, and height for a sub
sample.  However,  precise  plot  locations
are not publicly  available,  which prevents
cross-analysis  with  external  geographical
data.  Furthermore,  plot  density  is  1  plot/
2km2 with surveys only every 5 years, thus
making  the  data  unsuitable  for  statistical
analysis of small areas.

Aerial  imagery provides only two-dimen-
sional  images  that  do  not  enable  direct
measurement  of  the  vertical  components
of the forest canopy. However, in the be-
ginning of the twenty-first century, techno-
logical  advances  in  drones  and  active  re-
mote sensing, in particular through the de-
velopment of new sensors, opened promis-
ing perspectives for accessing forest struc-
tures (Campbell  et al.  2017).  For instance,
UAVs  (Unmanned  Aerial  Vehicles)  with
Light Detection and Ranging (LiDAR) pro-
vide  a  three-dimensional  geo-referenced
point  cloud  corresponding to  the  surface
objects that intercept the laser pulses from
a scanner  mounted on an aircraft  (Balen-
ović et al. 2013). Though the first uses of Li-
DAR were mainly devoted to digital terrain
models (Wehr & Lohr 1999), numerous ap-
plications in forestry have since been inves-
tigated.

An overview of  the bibliography reveals
that there are two main approaches to tree
crown  delineation  from  LiDAR  data.  The
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first one aims to model tree shape directly
in the LiDAR cloud, but this process is quite
complex (Monnet 2011,  Jaafar et al. 2018).
The second approach involves reducing the
LiDAR cloud from 3D to 2D. This simplifica-
tion is  interesting because rasters have a
longer development history than other ap-
proaches (Monnet et al.  2010,  Zhen et al.
2016). The 3D-to-2D approach relies on the
detection of treetops in the canopy height
model (CHM). Then, the crowns are delin-
eated with the watershed algorithm, which
reverses  the  image  and  considers  the
crown envelope as a basin (Mei & Durrieu
2004, Lindberg & Holmgren 2017).

To ensure proper delineation of the trees,
the algorithm’s parameters must be care-
fully chosen in order to correspond to tree

allometries,  which  are  often  species-  and
structure-specific. Applying watershed the-
ory to the forest requires some intrinsic pa-
rameters for tree architecture, such as the
distance  to  the  nearest  treetop,  crown
size, etc.

Our main goal was to test the ability  of
the various parameters in the tree segmen-
tation function of the “lidaRtRee” package
(Monnet 2018) running on free R software
to predict American maple stands in Black
poplar island forests. Another objective of
this technical paper is to assess the ability
of combined LiDAR data and multispectral
data acquired by unmanned aerial vehicles
(UAVs) to distinguish American maple from
Black poplar at the tree level. The test site
was  located  in  a  French  National  Nature

Reserve along the Loire River. We focused
on the use of open-source software tools
with visual  interpretation for training and
validation steps to ensure that the method
could be applied to larger areas.

Material and methods

Study area
The  research  was  conducted  in  central

France in the Loiret county, on the Mareau-
aux-Prés islands in the Loire River (within
the  boundaries  of  the  Saint-Mesmin  Na-
tional  Nature Reserve) near the village of
Mareau-aux-Prés (Fig. 1), approximately 10
km downstream from the city of  Orléans
(47° 51′ 51.88″ N, 01° 46′ 52.84″ E). The total
area  of  the  experiment  was  about  10  ha
and elevation ranged from 84 to 89 m a.s.l.
The mosaic of four islands (Fig. 2) is mainly
dominated by species from the Salicaceae
family  – adult  black  poplar  and  willow
shrubs (Salix spp.) – except for the central
island  (C)  where,  in  September  2012,  the
vegetation  was  uprooted  and  the  island
was leveled and lowered in order to main-
tain the flow capacity of the Loire river and
to prevent floods. A new sedimentary bar
appeared in spring 2013 and was colonized
by Black poplar and willow seedlings; this
island  was  therefore  surveyed  with  the
three other islands.

Image and LiDAR acquisition
Because terns were nesting on the banks,

we  were  allowed  to  fly  over  the  islands
only after August 15. The UAV flights were
carried  out  on  20  and  21  August  2017  by
“L’Avion  Jaune”,  a  French  aerial  mapping
operator using an octorotor FOX-C8 Onyxs-
tar®. The level of the Loire River was one
meter above  zero, corresponding to sum-
mer low water. Eight successive flights oc-
curred;  three  with  a  LiDAR  sensor,  then
five  others  with  a  camera.  LiDAR  data
were acquired by a YellowScan Surveyor®

(YellowScan,  Montferrier-sur-Lez,  France),
which included an onboard computer con-
trolling  three  main  components:  a  Velo-
dyne laser scanner (VLP16), a Global Navi-
gation Satellite System (GNSS) and an Iner-
tial  Navigation  System  (INS)  built  by  Ap-
planix (APX15). The flight height for the Li-
DAR was 45 m with a line spacing of 45 m
and  a  sidelap  of  60%.  The  average  point
density  per  m2 was  215.  Multispectral  im-
agery was acquired with a mapping system
conceived by L’Avion Jaune. The latter con-
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Fig. 1 - Study area.
The Mareau-aux-

prés islands are
located within the

large National Nat-
ural Reserve of
Saint-Mesmin,

downstream from
Orléans (Loiret,

France).

Fig. 2 - The mosaic of four 
islands. Letters indicate the
name of the islands.
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Remote sensing of american maple in alluvial forests

sisted of  a  pair  of  identical  digital  single-
lens reflex cameras (Canon® EOS 500D)  –
one modified  to  assess  the  near  infrared
(NIR) wavelength, while the other unmodi-
fied  camera  assessed  the  visible  wave-
lengths (RGB). The flight height for multi-
spectral acquisition was 100 m with a side-
lap of 60% and a frontlap of 80%.

Workflow
The  workflow  was  divided  into  three

main steps (Fig. 3): (i) data pre-processing;
(ii)  tree crown delineation; (iii)  model clas-
sification.

Data pre-processing: LiDAR data
Raw  data  processing  was  done  by  the

mapping  operator.  LiDAR  data  were  pro-
cessed  by  successively  running  them
through the PosPAC software by Applanix,
a Surveyor QGIS plugin by YellowScan, and
TerraMatch and TerraScan modules by Ter-
raSolid. The classified point cloud was de-
livered  in  LAS  format.  The  Digital  Terrain
Model (DTM) and the Canopy Height Mod-
el (CHM) were delivered in Geotif format at
0.2-m resolution. In order to compare dif-
ferent  tree  segmentations,  we  created  a
flood and non-flood forest mask within the
mosaic of islands (Fig. 4.). Since American
maple mainly colonizes river banks (Gurnell
2014),  we  excluded  the  hardwood  forest
(oak,  elm, ash),  located on higher  terrain
(in the non-flood area on island B), and re-
tained only values between 0 and 2.5 m in
height. This general mask was applied to all
image treatments,  including point  clouds,
DTM and CHM files, and orthophotos.

Data pre-processing: multispectral 
imagery and vegetation index

Multispectral  imagery  processing  was
performed according to scripts developed
by L’Avion Jaune and the Correlator3D soft-

ware  by  Simactive.  An  orthophoto  with
four  spectral  bands (blue,  green,  red and
near-infrared)  was  generated  with  a
Ground Sample Distance (GSD) of 0.02 m.
The  orthophoto was  resampled  to  0.2  m
for consistency with the CHM.

Then  four  simple vegetation indices,  ex-
cluding  the  infrared  wavelength,  were
computed:  (i)  Red  /  (Green  +  Blue);  (ii)
Green /  (Red + Blue);  (iii)  Blue /  (Green +
Red).  We also computed  the (iv) Normal-
ized  Difference Vegetation  Index (NDVI  –
Rouse et al. 1973).

Tree crown delineation
This  step  is  important  because  it  deter-

mines  the  location  and  extent  of  the
crowns. Subsequently, the data extracted

inside the delineated crowns are  used to
select  the  discrimination  variables  in  the
classification step. Tree segmentation was
performed  with  the  “treeSegmentation”
function  from  the  “lidaRtRee”  package
(Monnet 2018) of the R software (R Devel-
opment Core Team 2017). Delineation was
based  on  a  3-phase  approach,  with  each
phase requiring  several  values  for  param-
etrization.

First,  we applied filters to remove noise
from  the  CHM  file.  A  “salt-and-pepper”
noise  generally  appears  when  there  are
CHM  pixels  with  no  corresponding  laser
points (due to the shading effect of trees,
for example), or when there is a low num-
ber  of  pixels  inside  the  canopy.  The  low
and zero values were removed by applying
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Fig. 3 - Workflow.

Fig. 4 - Canopy Height
Model with non-riparian

hardwood forest excluded.
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a closing filter on a 3-pixel-wide neighbor-
hood, which is the default parameter. We
next  applied  a  Gaussian  filter  to  smooth
out  small  local  variations;  this  prevents

multiple branches from being detected as
separate apices (Monnet 2011). Smoothing
intensity is driven by the sigma value of the
Gaussian filter, which must be adapted to

the  tree  structure  and  species.  In  our
study, we tested all values from 0.1 to 0.9.

The second step was to select maximum
tree height. We first set a minimum treetop
height parameter with a value of 3 m in or-
der to avoid confusion with local maxima
related to herbs and shrubs. For example,
in summer 2017, nettles (Urtica sp.) reach-
ed  as  much  as  2.5  m  in  height.  We then
used horizontal neighborhood parameters
to take into account the minimum distance
between one maximum treetop height and
nearby crowns of the same height. Consid-
ering  the  important  overlap  between
crowns in the forest, no selection based on
minimum distance was applied (i.e., a mini-
mum distance of zero was applied).

The  third  step  was  tree  crown  delinea-
tion. To segment the crown extension, we
applied  a  marked-based  watershed  algo-
rithm. Segments in watershed analysis are
delineated by selecting local maxima as the
start  points  of  watersheds  created  by
flooding a model  surface; this process re-
verses the CHM. Each local maximum has
its corresponding crown (segment). In or-
der  to  exclude  neighboring  shrubs  from
the crown segment, two operations were
performed: (i)  pixels lower than 3 m were
excluded from the crowns; (ii)  inside each
crown,  we  further  excluded  the  pixels
lower  than  the  crown  proportion  multi-
plied by treetop height.  The resulting  pa-
rameter reflects the ratio between crown
depth  and  tree  height,  and  must  be
adapted depending on stand structure. We
tested  all  values  between  0.1  (the  tree
crown extended almost to the ground) and
0.9  (the  crown  was  located  within  the
highest 10% of the tree).

The different parameters tested and their
values are listed in Tab. 1.

Classification model: reference data
In order to build a model capable of sepa-

rating Acer negundo (AC) and Populus nigra
(PN),  a  reference dataset was created by
using the 0.02 cm resolution orthophotos.
Very high resolution imagery, such as pro-
vided by UAV, are ideal for photointerpre-
tation (Huylenbroeck et al. 2020). The op-
erator selected a total of 316 disks of 1 m
diameter and classified them as AC (157) or
PN (159). Although the operator is both a
botanist and an experienced GIS operator
with  exhaustive  field  knowledge  of  the
study  site,  classification  errors  might  be
present in this reference dataset.

Classification model: variables tested
In order to classify the two tree species,

variables  were  computed  for  each  delin-
eated crown based on the CHM, the point
cloud and the orthophoto intersecting the
crown segments.  Tab. 2 presents the vari-
ables tested sorted by category: tree met-
rics (T), LiDAR metrics (L) and orthophoto
indices  (O).  We tested different combina-
tions: (i) T + L + O; (ii) T + L; (iii) L + O; (iv) T
+ O; (v) T; (vi) L;  (vii) O. This made seven
possible  combinations  mixed  with  nine
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Tab. 1 - Parameters of the “treeSegmentation” function (“lidaRtRee” package).  (*):
Variables tested and their range of values.

Name Function

nFilter, nlSize Prevents “salt and pepper” where no laser points are recorded. We 
used the default option “Closing” and 3 for size.

sigma * Prevents branches in a crown from being considered as trees. We 
tested from 0.1 to 0.9

dmin/dprop Treetop minimum distance to the next higher pixel and distance as a 
proportion of height to the next higher pixel. 
We set these two values at “0” due to crown overlap

hmin Minimum treetop height: 3 m due to tall nettles

crownProp * Minimum height of tree crown as a proportion of treetop height. We 
tested from 0.1 to 0.9

crownMinH Minimum crown height. We set this value at 3 m.

Tab. 2 - Metrics computed.

Metrics
group Metrics Description

Tr
ee

 m
et

ri
cs

 (
T)

s Crown surface

v Crown volume

chm.sd Height standard deviation

zskew Skewness of height distribution

zkurt Kurtosis of height distribution

zentropy Normalized Shannon diversity index of height distribution

Li
D

AR
 m

et
ri

cs
 (

L)

zpcum1 Cumulative percentage of return in the 1st layer

zpcum2 Cumulative percentage of return in the 2nd layer

zpcum3 Cumulative percentage of return in the 3rd layer

zpcum4 Cumulative percentage of return in the 4th layer

zpcum5 Cumulative percentage of return in the 5th layer

zpcum6 Cumulative percentage of return in the 6th layer

zpcum7 Cumulative percentage of return in the 7th layer

zpcum8 Cumulative percentage of return in the 8th layer

zpcum9 Cumulative percentage of return in the 9th layer

isd Standard deviation of intensity

iskew Skewness of intensity distribution

ikurt Kurtosis of intensity distribution

ipcumzq10 Percentage of intensity returned below the 10th percentile of height

ipcumzq30 Percentage of intensity returned below the 30th percentile of height

ipcumzq50 Percentage of intensity returned below the 50th percentile of height

ipcumzq70 Percentage of intensity returned below the 70th percentile of height

ipcumzq90 Percentage of intensity returned below the 90th percentile of height

O
rt

ho
ph

ot
o 

In
di

ce
s 

(O
)

m.r.gb Median (R/(G+B))

m.g.rb Median (B/(R+G))

m.b.rg Median (B/(R+G))

m.ndvi Median (NDVI)

sd.r.gb Standard deviation of (R/(G+B))

sd.g.rb Standard deviation of (B/(R+G))

sd.b.rg Standard deviation of (B/(R+G))

sd.ndvi Standard deviation of (NDVI)
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Remote sensing of american maple in alluvial forests

possibilities for the Gaussian filter and nine
possibilities for the crown proportion (567
processes).

Direct height variables such as CHM, DTM
and point cloud minimum, mean or maxi-
mum values were  a priori discarded from
the analysis,  based  on  our  knowledge of
fluvial dynamics. Indeed, local island topog-
raphy changes annually due to sand accre-
tion  and  erosion.  Therefore,  keeping  a
fixed height  topography value set on the
Mareau-aux-Prés complex would have falsi-
fied our extrapolation for the Middle-Loire
stretch of  the river.  Secondly,  due to the
propagation strategy of the American ma-
ple,  whose seeds  arrive by cohort  on ex-
posed river banks (Straigyte et al. 2015), a
classification based on height values might
have  merely  reflected  the  age  difference
between  PN  and  AC,  particularly  at  our
study location in the National Reserve. This
would also have led to erroneous extrapo-
lated results for other areas along the Loire
River.

Classification model: decision tree
In order to select discriminating variables,

we used Decision Tree in the R party pack-
age (Hothorn et al. 2006). To confirm our
results,  we  ran  each  decision  tree  250
times.

Results
The entire classification process was run

on the riparian forests of the Mareau-aux-

Prés islands (Islands: A, B and D  – Fig. 4),
excluding the hardwood forests. We tested
567 processes and report their overall  ac-
curacy  and  standard  deviation  in  Tab. S1
(Supplementary material).

The accuracy of  our classification varied
with Gaussian filter and with crown propor-
tion according to metrics group. In  Fig. 5,
we only present the results from Gaussian
filter  0.4  because  below  this  threshold,
none of the models succeeded (see Tab. S1
in  Supplementary  material).  Best  overall
accuracy is represented by green dots for a
value greater than 94%. These results con-
cerned all of the metrics groups since the
best  combinations  were:  T,  TLO,  and  TO
with  crown  proportions  from  0.7  to  0.8
and Gaussian filters from 0.5 to 0.7. To se-
lect  the  best  metrics  groups,  we  had  to
take into account the number of trees used
for training/validation. Indeed, as shown in
Fig.  5,  we  observed  that  the  more  the

crown  proportion  and  the  Gaussian  filter
increased,  the more the  number  of  trees
decreased.  We then found the best  com-
promise  between  the  best  precision  and
the largest number of trees for training/val-
idation (out of a total of 316 trees selected
by visual interpretation).  Tab. 3 shows the
results  of  the green dot values  and their
standard deviations in Fig. 5. We observed
that  overall  accuracy  and  standard devia-
tions  were close and that  the number of
trees used for training/validation was actu-
ally relevant. Finally, we opted for Gaussian
filter values of 0.7 and 0.6, and for a crown
proportion value of 0.7.

Fig.  6 shows  that,  for  both  values  of
Gaussian filter (A and B), point cloud height
standard  deviation  was  the  most  robust
discriminating  variable  to  distinguish  AC
from  PN.  Indeed,  even  below  a  height
value  of  just  one  meter,  we  consistently
detected AC. Above this threshold, a vege-
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Tab. 3 - Overall accuracy assessment (mean ± standard deviation of 250 repetitions)
and number of trees in the reference dataset for the metrics groups selected accord-
ing to the tree segmentation parameters. (T/V): training / validation; (T): tree metrics;
(L): LiDAR metrics; (O): Ortophotos indices.

Gaussian
filter

crownProp T/V tree
number

TLO TO T

0.7 0.7 255 - 94.3 ± 2.7 -

0.6 0.7 257 - 94.1 ± 2.5 -

0.5 0.8 219 94.8 ± 2.5 94.8 ± 2.4 94.7 ± 2.3

Fig. 5 - Overall accuracy (%
on the y-axis) of the met-

rics groups tested (on the
x-axis) according to crown
proportion (values in gray

horizontal) and Gaussian
filter (values in gray verti-

cal). Metrics groups tested
were: Tree metrics (T),
LiDAR metrics (L) and

Orthophotos indices (O).
Combinations tested were:
T+L+O, T+L, L+O, T+O, T, L,
O. White rectangles corre-

spond to the number of
trees used for training and
validation. Green dots cor-

respond to an accuracy >
94%. iF
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tation index Red / (Green + Blue) standard
deviation  below  0.009  discriminated  PN.
However, above 0.009 there was an uncer-
tainty of more than 20% for the prediction
of PN.

Fig. 7 presents a prediction map showing
that American maple is mainly confined to
the outer edges of the islands.

Discussion
Our results show that, within the National

Nature Reserve of Mareau-aux-Prés, point
cloud  height  standard  deviation  and  the
standard vegetation index Red / (Green +
Blue)  predict  the  presence  of  American
maple (Acer negundo L.) in more than 90%
of the riparian Black poplar (Populus nigra
L.) forests.

The retained variables correspond respec-
tively to the groups of tree metrics (point
cloud  height  standard  deviation)  and  the
orthophoto  indices  (standard  vegetation
index).

In the context of introduced species in al-

luvial forest contexts, our results reinforce
the use of LiDAR coupled with photogram-
metry (Manfreda et al. 2018, Huylenbroeck
et al. 2020), although comparison with pre-
vious research also displays differences. In
a  Mediterranean  riparian  forest,  Dunford
et  al.  (2009) distinguished five  classes  in-
cluding four tree species with an overall ac-
curacy of 91% from a single RGB image of 13
cm  resolution  obtained  from  UAV.  Their
reference data consisted of homogeneous
terrain units identified on the field with an
inclusive  sampling  and  then  digitized  on
the imagery. The overall accuracy dropped
to 71% at the mosaic scale, partly because
of  radiometry  differences  in  images.  The
greater  accuracy  achieved  in  our  case
might be explained by the height informa-
tion added by LiDAR data,  as well  as  the
lower number of classes. The radiometry is-
sue  might  be  a  problem  when  analysing
larger areas which would require more im-
ages and acquisition time with a UAV. With
bi-spectral LiDAR data,  Laslier et al. (2019)

classified eight species of a riparian forest
in Normandy (France) with an overall accu-
racy of 67%. Their study also highlights the
importance of elevation metrics for classifi-
cation.  Intensity-related  metrics  did  not
bring much improvement in their classifica-
tion,  suggesting that spectral  information
of LiDAR might not be as straigthforward
to  use  as  with  imagery.  Differences  with
our results  might  be explained in part  by
the fact that they explored a larger gradi-
ent of tree species, while we limited our-
selves  to  two species.  A wider  variety  of
species  can  present  complex  internal  ca-
nopy structures revealed by LiDAR metrics.
When  comparing  the  importance  of  vari-
ables from multispectral and hyperspectral
imagery and full-wave form  LiDAR for the
classification of four tree species in a tem-
perate forest, Heinzel & Koch (2012) found
out that the NIR channel had great impor-
tance. Height metrics derived from LiDAR
were not  selected,  but  there was one Li-
DAR metric linked with the internal struc-
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Fig. 7 - Prediction map. 
Upper part of the figure: 
prediction map of the 
American maple (AC, in 
orange) and Black poplar 
(PN, in green). Lower part 
of the figure: an example 
on a part of the furthest 
island from the study: cir-
cles represent the data 
interpreted visually, trian-
gles represent the pre-
dicted apices, symbology 
of colors is identical to that
previously described.
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ry Fig. 6 - Conditional infer-
ence tree for the tree 
species data: AC in light 
gray, PN in dark gray. (A) 
Gaussian filter = 0.6, Crown
proportion = 0.7, number 
of trees for training/valida-
tion = 257. (B) Gaussian fil-
ter = 0.7, Crown proportion
= 0.7, number of trees for 
training/validation = 255. 
For each inner node, the 
Bonferroni-adjusted p-val-
ues are given; the fraction 
of tree species is displayed 
for each terminal node.
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ture.  Differences  with  our  findings  might
be  due  to  the  fact  that  they  considered
both  deciduous  and  coniferous  species,
which  have  different  reflectance  in  NIR.
Dalponte et al.  (2012) showed that LiDAR
height metrics improved the classification
of  mountainous  forests  into  seven  tree
species  compared  to  multispectral  data
only. The variability in findings available in
the  literature  shows  that  depending  on
species and forest structures, and probably
on acquisition period, there are variations
in  the  importance  of  metrics  of  different
types for species classification.

The results obtained here are rather en-
couraging regarding the potential for map-
ping AN dynamics on larger areas with sim-
ple  variables.  Meanwhile,  we  must  be
aware of limitations as pointed out by Huy-
lenbroeck et al. (2020) regarding upscaling
of results. In the case of longer stretch of
river,  the  relevance  of  spectral  indices
might decrease because of issues with ra-
diometric calibration of images and greater
variability of forest species, structure and
phenology.  The  use  of  reference  data
based  only  on  photointerpretation  might
also introduce bias or error in the training
and validation processes, but it makes also
possible to build larger datasets by taking
advantage of very high resolution imagery
available from UAV. It is clear that this step
is highly dependent both on the operator’s
experience in visual interpretation and his
knowledge of the study area, but it is es-
sential to calibrate the predictions as well
as possible (Manfreda et al. 2018, Demarchi
et al. 2020). The trade-off between variabil-
ity  representation  thanks  to  sample  size
and noise due to visual interpretation still
has  to be investigated in order to design
cost-efficient operational protocols for the
acquisition  of  reference  data  for  species
mapping in larger areas.

However,  there  are  limitations  to  our
findings,  especially  for  Black  poplar.  In-
deed, our results do not take into account
an indirect beaver-consumption effect.  By
consuming Black poplar, the beaver gener-
ates holes in the canopy that allow the Li-
DAR to better penetrate the crowns at the
tree scale. If we were to extend our work
to all  of  the Middle-Loire from Nevers to
Angers (a distance of about 400 km), the
results  would  be at  least  partially  depen-
dent on beaver population density per lin-
ear  kilometer.  How  accurate  would  our
classification  model  be  without  the  pres-
ence of the beaver?

One way to solve this problem would be
to  repeat  overflights  and  test  the  crown
delineation  function  with  tree  shape  set-
tings. This method was tested on Belgium
riparian forests by  Michez et al. (2016). Al-
though the image analyses differ according
to our study accuracy is greatly increased
by  repeated  overflights.  More  overflights
would likely improve detectability for Am-
erican maple under the canopy of the taller
Black poplars.

Lastly, as Pirotti et al. (2017) show in their

study, we could also test other tree crown
delineation  algorithms  such  as  “Li  2012”
and  “Dalponte  2016”.  The  Dalponte  2016
algorithm  (Dalponte  &  Coomes  2016)  is
similar  to  the  one we  used  in  this  study
since it starts from rather similar parame-
ters and then segments the CHM. On the
other  hand,  Li’s  2012  algorithm  (Li  et  al.
2012)  does  not  use a  CHM and works  di-
rectly on the point cloud instead. Though
algorithms  based  directly  on  the  point
cloud seem to take more processing time,
they could  enable researchers  to  explore
the canopy structure of these Loire-island
forests.

Conclusion
American maple (Acer  negundo L.)  is  an

introduced species,  which competes  with
the  endemic  Black  poplar  (Populus  nigra
L.).  We  used  an  airborne  LiDAR  scanner
and imagery-derived vegetation index data
to discriminate American maple from Black
poplar with 90% accuracy on a complex of
four islands inside the National Nature Re-
serve  of  Saint-Mesmin  in  the  Loire  River
(France), based on a training and validation
dataset  obtained  by  photointerpretation.
Mapping  the  American  maple  is  all  the
more  important  since  beavers  (reintro-
duced  in  the  1970s)  do  not  consume  it,
though  it  consumes  Black  poplar.  We
found that tree crown delineation is opti-
mized by the “treeSegmentation” function
from  the  “lidaRtRee”  package  (Monnet
2018) running under free R software (R De-
velopment  Core  Team  2017).  We  tested
two important parameters of this function:
the Gaussian filter  and crown proportion.
The first parameter prevents big branches
in a crown being considered as trees. The
second  optimizes  the  proportion  of  the
crown  relative  to  the  total  height.  We
found that the best values for the Gaussian
filter  and  crown  proportion  were  respec-
tively 0.7 (and 0.6) and 0.7. We also found
that the best predictors were point cloud
height standard deviation and the standard
deviation  of  a  simple  vegetation  index
based on RGB wavelengths, Red/ (Green +
Blue).
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